Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow (original) (raw)
Lanzavecchia, A. & Sallusto, F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr. Opin. Immunol.12, 92–98 (2000). ArticleCASPubMed Google Scholar
Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature (Lond.).402, 255–262 (1999). ArticleCAS Google Scholar
Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature.402, 708–712 (1999). Article Google Scholar
Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunol.1, 47–53 (2000). ArticleCAS Google Scholar
Sprent, J., Tough, D.F. & Sun, S. Factors controlling the turnover of T memory cells. Immunol. Rev.156, 79–85 (1997). ArticleCASPubMed Google Scholar
Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science276, 2057–2062 (1997). ArticleCASPubMed Google Scholar
Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell immune response in vivo: from activation to memory formation. Immunity11, 163–171 (1999). ArticleCASPubMed Google Scholar
Khazaie, K. et al. Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc. Natl. Acad. Sci. USA91, 7430–7434 (1994). ArticleCASPubMedPubMed Central Google Scholar
Müller, M. et al. Eb-lacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res.58, 5439–5446 (1998). PubMed Google Scholar
Pantel, K., Cote, R.J. & Fodstad, O. Detection and clinical importance of micrometastatic disease. J. Natl. Cancer Inst.91, 1113–1124 (1999). ArticleCASPubMed Google Scholar
Feuerer, M. et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int. J. Cancer92, 96–105 (2001). ArticleCASPubMed Google Scholar
Fisk, B., Blevins, T.L., Wharton, J.T. & Ioannides, C.G. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J. Exp. Med.181, 2109–2117 (1995). ArticleCASPubMed Google Scholar
Brossart, P. et al. Identification of HLA-A2-restricted T-cell epitopes derived from MUC1 tumor antigen for broadly applicable vaccine therapies. Blood93, 4309–4317 (1999). CASPubMed Google Scholar
Tsomides, T.J. et al. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J. Exp. Med.180, 1283–1293 (1994). ArticleCASPubMed Google Scholar
Schultz, L.D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol.154, 180–191 (1995). Google Scholar
Visonneau, S. Cesano, A., Torosian, M.H., Miller, E.J. & Santoli, D. Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am. J. Pathol.152, 1299–1311 (1998). CASPubMedPubMed Central Google Scholar
Slavin, S. et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse post allogeneic bone marrow transplantation. Blood87, 2195–2204 (1996). CASPubMed Google Scholar
Rosenberg, S.A. et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjuction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl. Cancer Inst.85, 622–632 (1993). ArticleCASPubMed Google Scholar
Rosenberg, S.A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity10, 281–287 (1999). ArticleCASPubMed Google Scholar
Schirrmacher, V., Schild, H.J., Gückel, B. & von Hoegen, P. Tumor specific CTL response requiring interactions of four different cell types and dual recognition of MHC class I and class II restricted tumor antigens. Immunol. Cell Biol.71, 311–326 (1992). Article Google Scholar
Singh-Jasuja, H. et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of ist receptor. Eur. J. Immunol.30, 2211–2215 (2000). ArticleCASPubMed Google Scholar
Sauter, B. et al. Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med.191, 423–433 (2000). ArticleCASPubMedPubMed Central Google Scholar
Finn, O.J. et al. MUC1 epithelial tumor-mucin-based immunity and cancer vaccines. Immunol.Rev.145, 61–89 (1995). ArticleCASPubMed Google Scholar
Disis, M.L., Grabstein, K.H., Sleath, D.R. & Cheever, M.A. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide–based vaccine. Clin. Cancer Res.5, 1289–1297 (1999). CASPubMed Google Scholar
Fields, R.C., Shimizu, K. & Mule, J.J. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc. Natl. Acad. Sci. USA96, 8639–8644 (1999). Article Google Scholar
Müerköster, S. et al. Graft-versus-Leukemia reactivity involves cluster formation between superantigen-reactive donor T lymphocytes and host macrophages. Clin. Cancer Res.4, 3095–3106 (1998). PubMed Google Scholar
Lee, P.D. et al. Charcterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med.5, 677–685 (1999). ArticleCASPubMed Google Scholar
Valmori, D. et al. Naturally occuring human lymphocyte antigen-A2 restricted CD8+ T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res.60, 4499–4506 (2000). CASPubMed Google Scholar
Slifka, M.K., Whitmire, J.K. & Ahmed, R. Bone marrow contains virus-specific cytotoxic T lymphocytes. Blood90, 2103–2108 (1997). CASPubMed Google Scholar
Price, P.W. & Cerny, J. Characterization of CD4+ T cells in mouse bone marrow. I. Increased activated/memory phenotype and altered TCR V-β repertoire. Eur. J. Immunol.29, 1051–1056 (1999). ArticleCASPubMed Google Scholar
Kuroda, M.J. et al. Simian immunodeficiency virus-specific cytotoxic T lymphocytes and cell-associated viral RNA levels in distinct lymphoid compartments of SIVmac-infected rhesus monkeys. Blood96, 1474–1479 (2000). CASPubMed Google Scholar
Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G.V. & Wolf, N.S. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc. Natl. Acad. Sci. USA92, 9647–9651 (1997). Article Google Scholar
Briskin, M.J. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol.151, 97–110 (1997). CASPubMedPubMed Central Google Scholar
Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell74, 185–195 (1993). ArticleCASPubMed Google Scholar
Erle, D.J. et al. Expression and function of the MAdCAM-1 receptor, integrin α4β7, on human leucocytes. J. Immunol.153, 517–528.
Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med.4, 328–332 (1998). ArticleCASPubMed Google Scholar
Kugler, A. et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med.6, 332–336 (2000). ArticleCASPubMed Google Scholar
Diel, K.J. et al. Micrometastatic breast cancer cells in bone marrow at primary surgery - prognostic value in comparison to nodal status. J. Natl. Cancer Inst.88, 1652–1658 (1996). ArticleCASPubMed Google Scholar
Schuler, G. et al. in Dendritic cells (eds. Lotze, M.T. & Thomson, A.W.) 515–534 (Academic Press, San Diego, California, 1999). Google Scholar
Brossart, P. & Bevan, M.J. Selective activation of Fas/FasL mediated cytotoxicity by a self-peptide. J. Exp. Med.183, 2449–2458 (1996). ArticleCASPubMed Google Scholar