Somatic mutation hotspots correlate with DNA polymerase η error spectrum (original) (raw)

References

  1. Neuberger, M. S. & Milstein, C. Somatic hypermutation. Curr. Opin. Immunol. 7, 248–254 (1995).
    Article CAS Google Scholar
  2. Jacobs, H. & Bross, L. Towards an understanding of somatic hypermutation. Curr. Opin. Immunol. 13, 208–218 (2001).
    Article CAS Google Scholar
  3. Lebecque, S. G. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).
    Article CAS Google Scholar
  4. Berek, C. & Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol. Rev. 96, 23–41 (1987).
    Article CAS Google Scholar
  5. Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).
    Article CAS Google Scholar
  6. Reynaud, C. A., Garcia, C., Hein, W. R. & Weill, J. C. Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process. Cell 80, 115–125 (1995).
    Article CAS Google Scholar
  7. Rogozin, I. B., Sredneva, N. E. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. III. Somatic mutations in the chicken light chain locus. Biochim. Biophys. Acta 1306, 171–178 (1996).
    Article Google Scholar
  8. Hsu, E. Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol. Rev. 162, 25–36 (1998).
    Article CAS Google Scholar
  9. Goyenechea, B. & Milstein, C. Modifying the sequence of an immunoglobulin V-gene alters the resulting pattern of hypermutation. Proc. Natl Acad. Sci. USA 93, 13979–13984 (1996).
    Article CAS Google Scholar
  10. Klix, N. et al. Multiple sequences from downstream of the Jκ cluster can combine to recruit somatic hypermutation to a heterologous, upstream mutation domain. Eur. J. Immunol. 28, 317–326 (1998).
    Article CAS Google Scholar
  11. Bachl, J., Steinberg, C. & Wabl, M. Critical test of hot spot motifs for immunoglobulin hypermutation. Eur. J. Immunol. 27, 3398–3403 (1997).
    Article CAS Google Scholar
  12. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).
    Article CAS Google Scholar
  13. Wagner, S. D., Milstein, C. & Neuberger, M. S. Codon bias targets mutation. Nature 376, 732 (1995).
    Article CAS Google Scholar
  14. Shapiro, G. S., Aviszus, K., Ikle, D. & Wysocki, L. J. Predicting regional mutability in antibody V genes based solely on di- and trinucleotide sequence composition. J. Immunol. 163, 259–268 (1999).
    CAS PubMed Google Scholar
  15. Milstein, C., Neuberger, M. S. & Staden, R. Both DNA strands of antibody genes are hypermutation targets. Proc. Natl Acad. Sci. USA 95, 8791–8794 (1998).
    Article CAS Google Scholar
  16. Foster, S. J., Dorner, T. & Lipsky, P. E. Somatic hypermutation of VκJκ rearrangements: targeting of RGYW motifs on both DNA strands and preferential selection of mutated codons within RGYW motifs. Eur. J. Immunol. 29, 4011–4021 (1999).
    Article CAS Google Scholar
  17. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).
    Article CAS Google Scholar
  18. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).
    Article CAS Google Scholar
  19. Weber, J. S., Berry, J., Manser, T. & Claflin, J. L. Position of the rearranged Vκ and its 5′ flanking sequences determines the location of somatic mutations in the Jκ locus. J. Immunol. 146, 3652–3655 (1991).
    CAS PubMed Google Scholar
  20. Smith, D. S. et al. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J. Immunol. 156, 2642–2652 (1996).
    CAS PubMed Google Scholar
  21. Both, G. W., Taylor, L., Pollard, J. W. & Steele, E. J. Distribution of mutations around rearranged heavy-chain antibody variable-region genes. Mol. Cell Biol. 10, 5187–5196 (1990).
    Article CAS Google Scholar
  22. Lanning, D. K. & Knight, K. L. Somatic hypermutation: mutations 3′ of rabbit VDJ H-chain genes. J. Immunol. 159, 4403–4407 (1997).
    CAS PubMed Google Scholar
  23. Parvari, R., Ziv, E., Lantner, F., Heller, D. & Schechter, I. Somatic diversification of chicken immunoglobulin light chains by point mutations. Proc. Natl Acad. Sci. USA 87, 3072–3076 (1990).
    Article CAS Google Scholar
  24. Gonzalez-Fernandez, A., Gupta, S. K., Pannell, R., Neuberger, M. S. & Milstein, C. Somatic mutation of immunoglobulin λ chains: a segment of the major intron hypermutates as much as the complementarity-determining regions. Proc. Natl Acad. Sci. USA 91, 12614–12618 (1994).
    Article CAS Google Scholar
  25. Weber, J. S., Berry, J., Manser, T. & Claflin, J. L. Mutations in Ig V(D)J genes are distributed asymmetrically and independently of the position of V(D)J. J. Immunol. 153, 3594–3602 (1994).
    CAS PubMed Google Scholar
  26. Rada, C., Gonzalez-Fernandez, A., Jarvis, J. M. & Milstein, C. The 5′ boundary of somatic hypermutation in a Vκ gene is in the leader intron. Eur. J. Immunol. 24, 1453–1457 (1994).
    Article CAS Google Scholar
  27. Gonzalez-Fernandez, A. & Milstein, C. Analysis of somatic hypermutation in mouse Peyer's patches using immunoglobulin κ light-chain transgenes. Proc. Natl Acad. Sci. USA 90, 9862–9866 (1993).
    Article CAS Google Scholar
  28. Storb, U. et al. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J. Exp. Med. 188, 689–698 (1998).
    Article CAS Google Scholar
  29. Hackett, J., Rogerson, B. J., O'Brien, R. L. & Storb, U. Analysis of somatic mutations in κ transgenes. J. Exp. Med. 172, 131–137 (1990).
    Article CAS Google Scholar
  30. Levy, Y. et al. Defect in IgV gene somatic hypermutation in common variable immuno-deficiency syndrome. Proc. Natl Acad. Sci. USA 95, 13135–13140 (1998).
    Article CAS Google Scholar
  31. Glazko, G. V., Milanesi, L. & Rogozin, I. B. The subclass approach for mutational spectrum analysis: application of the SEM algorithm. J. Theor. Biol. 192, 475–487 (1998).
    Article CAS Google Scholar
  32. Brenner, S. & Milstein, C. Origin of antibody variation. Nature 211, 242–243 (1966).
    Article CAS Google Scholar
  33. Kim, N. & Storb, U. The role of DNA repair in somatic hypermutation of immunoglobulin genes. J. Exp. Med. 187, 1729–1733 (1998).
    Article CAS Google Scholar
  34. Harris, R. S., Kong, Q. & Maizels, N. Somatic hypermutation and the three R's: repair, replication and recombination. Mutation Res. 436, 157–178 (1999).
    Article CAS Google Scholar
  35. Poltoratsky, V., Goodman, M. F. & Scharff, M. D. Error-prone candidates vie for somatic mutation. J. Exp. Med. 192, 27–30 (2000).
    Article Google Scholar
  36. Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol. 1, 101–109 (2000).
    Article CAS Google Scholar
  37. Johnson, R. E., Washington, M. T., Prakash, S. & Prakash, L. Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. Proc. Natl Acad. Sci. USA 96, 12224–12226 (1999).
    Article CAS Google Scholar
  38. Friedberg, E. C., Feaver, W. J. & Gerlach, V. L. The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance. Proc. Natl Acad. Sci. USA 97, 5681–5683 (2000).
    Article CAS Google Scholar
  39. Roberts, J. D. & Kunkel, T. A. in DNA Replication in Eukaryotic Cells: Concepts, enzymes and systems (ed. Pamphilis, M. D.) 217–247 (Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, 1996).
    Google Scholar
  40. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999).
    Article CAS Google Scholar
  41. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).
    Article CAS Google Scholar
  42. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-η. Nature 404, 1011–1013 (2000).
    Article CAS Google Scholar
  43. Bebenek, K., Matsuda, T., Masutani, C., Hanaoka, F. & Kunkel, T. A. Proofreading of DNA polymerase η-dependent replication errors. J. Biol. Chem. 276, 2317–2320 (2001).
    Article CAS Google Scholar
  44. Storb, U. et al. Somatic hypermutation of immunoglobulin genes is linked to transcription. Curr. Top. Microbiol. Immunol. 229, 11–19 (1998).
    CAS PubMed Google Scholar
  45. Spencer, J., Dunn, M. & Dunn-Walters, D. K. Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J. Immunol. 162, 6596–6601 (1999).
    CAS PubMed Google Scholar
  46. Ohashi, E. et al. Fidelity and processivity of DNA synthesis by DNA polymerase κ, the product of the human DINB1 gene. J. Biol. Chem. 275, 39678–39684 (2000).
    Article CAS Google Scholar
  47. Kolchanov, N. A., Solovyov, V. V. & Rogozin, I. B. Peculiarities of immunoglobulin gene structures as a basis for somatic mutation emergence. FEBS Lett. 214, 87–91 (1987).
    Article CAS Google Scholar
  48. Golding, G. B., Gearhart, P. J. & Glickman, B. W. Patterns of somatic mutations in immunoglobulin variable genes. Genetics 115, 169–176 (1987).
    CAS PubMed PubMed Central Google Scholar
  49. Rogozin, I. B., Solovyov, V. V. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. I. Correlation between somatic mutations and repeats. Somatic mutation properties and clonal selection. Biochim. Biophys. Acta 1089, 175–182 (1991).
    Article CAS Google Scholar
  50. Zeng, X. et al. DNA polymerase η is an A-T mutator in somatic hypermutation of immunglobulin variable genes. Nature Immunol. 2, 537–541 (2001).
    Article CAS Google Scholar
  51. Kunkel, T. A. The mutational specificity of DNA polymerases-α and -γ during in vitro DNA synthesis. J. Biol. Chem. 260, 12866–12874 (1985).
    CAS PubMed Google Scholar
  52. Kunkel, T. A. The mutational specificity of DNA polymerase-β during in vitro DNA synthesis. Production of frameshift, base substitution, and deletion mutations. J. Biol. Chem. 260, 5787–5796 (1985).
    CAS PubMed Google Scholar
  53. Bebenek, K., Abbotts, J., Roberts, J. D., Wilson, S. H. & Kunkel, T. A. Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J. Biol. Chem. 264, 16948–16956 (1989).
    CAS PubMed Google Scholar
  54. Rogozin, I. B., Kondrashev, F. A. & Glazko, G. V. Use of mutation spectra analysis software. Hum. Mutation 17, 83–102 (2001).
    Article CAS Google Scholar
  55. Oprea, M., Cowell, L.G. & Kepler, T.B. The targeting of somatic hypermutation closely resembles that of meiotic mutation. J. Immunol. 166, 892–899 (2001).
    Article CAS Google Scholar

Download references