DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes (original) (raw)
References
Wood, R. D., Gearhart, P. J. & Neuberger, M. S. Hypermutation in antibody genes. Phil. Trans. R. Soc. Lond. B 356, 1–125 (2001). Google Scholar
Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature354, 389–392 (1991). ArticleCAS Google Scholar
Gearhart, P. J. & Bogenhagen, D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc. Natl Acad. Sci. USA80, 3439–3443 (1983). ArticleCAS Google Scholar
Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell77, 239–248 (1994). ArticleCAS Google Scholar
Lebecque, S. G. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is about 1 kb from V(D)J gene. J. Exp. Med.172, 1717–1727 (1990). ArticleCAS Google Scholar
Smith, D. S. et al. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J. Immunol.156, 2642–2652 (1996). CASPubMed Google Scholar
Foster, S. J., Dörner, T. & Lipsky, P. E. Targeting and subsequent selection of somatic hypermutations in the human Vκ repertoire. Eur. J. Immunol.29, 3122–3132 (1999). ArticleCAS Google Scholar
Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochem. Biophys. Acta1171, 11–18 (1992). CASPubMed Google Scholar
Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity13, 589–597 (2000). ArticleCAS Google Scholar
Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature408, 216–221 (2000). ArticleCAS Google Scholar
Johnson, R.E., Washington, M.T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature406, 1015–1019 (2000). ArticleCAS Google Scholar
Wittschieben, J. et al. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr. Biol.10, 1217–1220 (2000). ArticleCAS Google Scholar
Johnson, R. E., Washington, M. T., Prakash, S. & Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem.275, 7447–7450 (2000). ArticleCAS Google Scholar
Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-η. Nature404, 1011–1013 (2000). ArticleCAS Google Scholar
Masutani, C., Kusumoto, R., Iwai, S. & Hanaoka, F. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J.19, 3100–3109 (2000). ArticleCAS Google Scholar
Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. Polι, a remarkably error- prone human DNA polymerase. Genes Dev.14, 1642–1650 (2000). CASPubMedPubMed Central Google Scholar
Domínguez, O. et al. DNA polymerase mu (Pol μ), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J.19, 1731–1742 (2000). Article Google Scholar
Aoufouchi, S. et al. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res.28, 3684–3693 (2000). ArticleCAS Google Scholar
Sharief, F. S., Vojta, P. J., Ropp, P. A. & Copeland W. C. Cloning and chromosomal mapping of the human DNA polymerase θ (POLQ), the eighth human DNA polymerase. Genomics59, 90–96 (1999). ArticleCAS Google Scholar
Ohashi, E. et al. Fidelity and processivity of DNA synthesis by DNA polymerase κ, the product of the human DINB1 gene. J. Biol. Chem.275, 39678–39684 (2000). ArticleCAS Google Scholar
García-Díaz, M. et al. DNA polymerase lambda (Pol λ),, a novel eukaryotic DNA polymerase with a potential role in meiosis. J. Mol. Biol.301, 851–867 (2000). Article Google Scholar
Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature399, 700–704 (1999). ArticleCAS Google Scholar
Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science285, 263–265 (1999). ArticleCAS Google Scholar
Lehmann, A. R. et al. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Natl Acad. Sci. USA72, 219–223 (1975). ArticleCAS Google Scholar
Wang, Y. C., Maher, V. M., Mitchell, D. L. & McCormick, J. J. Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Mol. Cell Biol.13, 4276–4283 (1993). ArticleCAS Google Scholar
Winter, D. B., Phung, Q. H., Wood, R. D. & Gearhart, P. J. Differential expression of DNA polymerase ɛ in resting and activated B lymphocytes is consistent with an in vivo role in replication and not repair. Mol. Immunol.37, 125–131 (2000). ArticleCAS Google Scholar
Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity9, 859–869 (1998). ArticleCAS Google Scholar
Denepoux, S. et al. Induction of somatic mutation in a human B cell line in vitro. Immunity6, 35–46 (1997). ArticleCAS Google Scholar
Kraemer, K. H. & Slor, H. Xeroderma pigmentosum. Clin. Dermatol.3, 33–69 (1985). ArticleCAS Google Scholar
Berth-Jones, J. & Graham-Brown, R. A. C. Xeroderma pigmentosum variant: response to etretinate. Brit. J. Dermatol.122, 559–561 (1990). ArticleCAS Google Scholar
Sanz, I. et al. The smaller human VH gene families display remarkably little polymorphism. EMBO J.8, 3741–3748 (1989). ArticleCAS Google Scholar
Corbett, S. J., Tomlinson, I. M., Sonnhammer, E. L. L., Buck, D. & Winter, G. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol.270, 587–597 (1997). ArticleCAS Google Scholar
Rosner, K. et al. Impact of age on hypermutation of immunoglobulin variable genes in humans. J. Clin. Immunol.21, 102–115 (2001). ArticleCAS Google Scholar
Johnson, R. E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, polη. Science283, 1001–1004 (1999). ArticleCAS Google Scholar
Nelson, J. R., Lawrence, C. W. & Hinkle, D. C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science272, 1646–1649 (1996). ArticleCAS Google Scholar
Yamada, A., Masutani, C., Iwai, S. & Hanaoka, F. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase η. Nucleic Acids Res.28, 2473–2480 (2000). ArticleCAS Google Scholar
Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev.15, 158–172 (2001). ArticleCAS Google Scholar
Brezinschek, H. P., Foster, S. J., Dörner, T., Brezinschek, R. I. & Lipsky, P. E. Pairing of variable heavy and variable κ chains in individual naive and memory B cells. J. Immunol.160, 4762–4767 (1998). CASPubMed Google Scholar
Rosner, K. et al. Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J., P, and N components than nonmutated genes. Immunology103, (in the press, 2001).
Winter, D. B. et al. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc. Natl Acad. Sci. USA95, 6953–6958 (1998). ArticleCAS Google Scholar
Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol.1, 101–109 (2000). ArticleCAS Google Scholar
Spencer, J., Dunn, M. & Dunn-Walters, D. K. Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J. Immunol.162, 6596–6601 (1999). CASPubMed Google Scholar
Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Correlation between hotspots for somatic mutation in immunoglobulin genes and DNA synthesis errors by DNA polymerase η. Nature Immunol.2, 530–536 (2001). ArticleCAS Google Scholar
Phung, Q. H. et al. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J. Exp. Med.187, 1745–1751 (1998). ArticleCAS Google Scholar
Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med.191, 579–584 (2000). ArticleCAS Google Scholar
Kim, N., Bozet, G., Lo, J.C. & Storb, U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J. Exp. Med.190, 21–30 (1999). ArticleCAS Google Scholar
Pâques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Micro. Mol. Biol. Rev.63, 349–404 (1999). Google Scholar
Frank, E. G. et al. Altered nucleotide misinsertion fidelity associated with polι-dependent replication at the end of a DNA template. EMBO J.20 (in the press, 2001).
Tissier, A. et al. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase ι. EMBO J.19, 5259–5266 (2000). ArticleCAS Google Scholar