DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes (original) (raw)

References

  1. Wood, R. D., Gearhart, P. J. & Neuberger, M. S. Hypermutation in antibody genes. Phil. Trans. R. Soc. Lond. B 356, 1–125 (2001).
    Google Scholar
  2. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).
    Article CAS Google Scholar
  3. Gearhart, P. J. & Bogenhagen, D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc. Natl Acad. Sci. USA 80, 3439–3443 (1983).
    Article CAS Google Scholar
  4. Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).
    Article CAS Google Scholar
  5. Lebecque, S. G. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is about 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).
    Article CAS Google Scholar
  6. Smith, D. S. et al. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J. Immunol. 156, 2642–2652 (1996).
    CAS PubMed Google Scholar
  7. Foster, S. J., Dörner, T. & Lipsky, P. E. Targeting and subsequent selection of somatic hypermutations in the human Vκ repertoire. Eur. J. Immunol. 29, 3122–3132 (1999).
    Article CAS Google Scholar
  8. Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochem. Biophys. Acta 1171, 11–18 (1992).
    CAS PubMed Google Scholar
  9. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).
    Article CAS Google Scholar
  10. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).
    Article CAS Google Scholar
  11. Johnson, R.E., Washington, M.T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).
    Article CAS Google Scholar
  12. Wittschieben, J. et al. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr. Biol. 10, 1217–1220 (2000).
    Article CAS Google Scholar
  13. Johnson, R. E., Washington, M. T., Prakash, S. & Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447–7450 (2000).
    Article CAS Google Scholar
  14. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-η. Nature 404, 1011–1013 (2000).
    Article CAS Google Scholar
  15. Masutani, C., Kusumoto, R., Iwai, S. & Hanaoka, F. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J. 19, 3100–3109 (2000).
    Article CAS Google Scholar
  16. Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. Polι, a remarkably error- prone human DNA polymerase. Genes Dev. 14, 1642–1650 (2000).
    CAS PubMed PubMed Central Google Scholar
  17. Domínguez, O. et al. DNA polymerase mu (Pol μ), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 19, 1731–1742 (2000).
    Article Google Scholar
  18. Aoufouchi, S. et al. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res. 28, 3684–3693 (2000).
    Article CAS Google Scholar
  19. Sharief, F. S., Vojta, P. J., Ropp, P. A. & Copeland W. C. Cloning and chromosomal mapping of the human DNA polymerase θ (POLQ), the eighth human DNA polymerase. Genomics 59, 90–96 (1999).
    Article CAS Google Scholar
  20. Ohashi, E. et al. Fidelity and processivity of DNA synthesis by DNA polymerase κ, the product of the human DINB1 gene. J. Biol. Chem. 275, 39678–39684 (2000).
    Article CAS Google Scholar
  21. García-Díaz, M. et al. DNA polymerase lambda (Pol λ),, a novel eukaryotic DNA polymerase with a potential role in meiosis. J. Mol. Biol. 301, 851–867 (2000).
    Article Google Scholar
  22. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).
    Article CAS Google Scholar
  23. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999).
    Article CAS Google Scholar
  24. Lehmann, A. R. et al. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Natl Acad. Sci. USA 72, 219–223 (1975).
    Article CAS Google Scholar
  25. Wang, Y. C., Maher, V. M., Mitchell, D. L. & McCormick, J. J. Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Mol. Cell Biol. 13, 4276–4283 (1993).
    Article CAS Google Scholar
  26. Winter, D. B., Phung, Q. H., Wood, R. D. & Gearhart, P. J. Differential expression of DNA polymerase ɛ in resting and activated B lymphocytes is consistent with an in vivo role in replication and not repair. Mol. Immunol. 37, 125–131 (2000).
    Article CAS Google Scholar
  27. Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998).
    Article CAS Google Scholar
  28. Denepoux, S. et al. Induction of somatic mutation in a human B cell line in vitro. Immunity 6, 35–46 (1997).
    Article CAS Google Scholar
  29. Kraemer, K. H. & Slor, H. Xeroderma pigmentosum. Clin. Dermatol. 3, 33–69 (1985).
    Article CAS Google Scholar
  30. Berth-Jones, J. & Graham-Brown, R. A. C. Xeroderma pigmentosum variant: response to etretinate. Brit. J. Dermatol. 122, 559–561 (1990).
    Article CAS Google Scholar
  31. Sanz, I. et al. The smaller human VH gene families display remarkably little polymorphism. EMBO J. 8, 3741–3748 (1989).
    Article CAS Google Scholar
  32. Corbett, S. J., Tomlinson, I. M., Sonnhammer, E. L. L., Buck, D. & Winter, G. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270, 587–597 (1997).
    Article CAS Google Scholar
  33. Rosner, K. et al. Impact of age on hypermutation of immunoglobulin variable genes in humans. J. Clin. Immunol. 21, 102–115 (2001).
    Article CAS Google Scholar
  34. Johnson, R. E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, polη. Science 283, 1001–1004 (1999).
    Article CAS Google Scholar
  35. Nelson, J. R., Lawrence, C. W. & Hinkle, D. C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272, 1646–1649 (1996).
    Article CAS Google Scholar
  36. Yamada, A., Masutani, C., Iwai, S. & Hanaoka, F. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase η. Nucleic Acids Res. 28, 2473–2480 (2000).
    Article CAS Google Scholar
  37. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).
    Article CAS Google Scholar
  38. Brezinschek, H. P., Foster, S. J., Dörner, T., Brezinschek, R. I. & Lipsky, P. E. Pairing of variable heavy and variable κ chains in individual naive and memory B cells. J. Immunol. 160, 4762–4767 (1998).
    CAS PubMed Google Scholar
  39. Rosner, K. et al. Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J., P, and N components than nonmutated genes. Immunology 103, (in the press, 2001).
  40. Winter, D. B. et al. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc. Natl Acad. Sci. USA 95, 6953–6958 (1998).
    Article CAS Google Scholar
  41. Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol. 1, 101–109 (2000).
    Article CAS Google Scholar
  42. Spencer, J., Dunn, M. & Dunn-Walters, D. K. Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J. Immunol. 162, 6596–6601 (1999).
    CAS PubMed Google Scholar
  43. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Correlation between hotspots for somatic mutation in immunoglobulin genes and DNA synthesis errors by DNA polymerase η. Nature Immunol. 2, 530–536 (2001).
    Article CAS Google Scholar
  44. Phung, Q. H. et al. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J. Exp. Med. 187, 1745–1751 (1998).
    Article CAS Google Scholar
  45. Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000).
    Article CAS Google Scholar
  46. Kim, N., Bozet, G., Lo, J.C. & Storb, U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J. Exp. Med. 190, 21–30 (1999).
    Article CAS Google Scholar
  47. Pâques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Micro. Mol. Biol. Rev. 63, 349–404 (1999).
    Google Scholar
  48. Frank, E. G. et al. Altered nucleotide misinsertion fidelity associated with polι-dependent replication at the end of a DNA template. EMBO J. 20 (in the press, 2001).
  49. Tissier, A. et al. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase ι. EMBO J. 19, 5259–5266 (2000).
    Article CAS Google Scholar

Download references