Synexpression groups in eukaryotes (original) (raw)

References

  1. Brown,P. O. & Botstein,D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33 –37 (1999).
    Article CAS Google Scholar
  2. Gerhold,D., Rushmore,T. & Caskey,C. T. DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168– 173 (1999).
    Article CAS Google Scholar
  3. Lipshutz,R. J., Fodor,S. P., Gingeras,T. R. & Lockhart,D. J. High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24 (1999).
    Article CAS Google Scholar
  4. Bowtell,D. D. Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21, 25– 32 (1999).
    Article CAS Google Scholar
  5. Cheung,V. G. et al. Making and reading microarrays. Nat. Genet. 21, 15–19 (1999).
    Article CAS Google Scholar
  6. Duggan,D. J., Bittner,M., Chen,Y., Meltzer,P. & Trent,J. M. Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 ( 1999).
    Article CAS Google Scholar
  7. Bassett,D. E., Eisen,M. B. & Boguski,M. S. Gene expression informatics—it's all in your mine. Nat. Genet. 21, 51– 55 (1999).
    Article CAS Google Scholar
  8. DeRisi,J. L., Vishwanath,R. I. & Brown,P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).
    Article ADS CAS Google Scholar
  9. Chu,S et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 ( 1998).
    Article ADS CAS Google Scholar
  10. Cho,R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).
    Article CAS Google Scholar
  11. Spellman,P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273– 97 (1998).
    Article CAS Google Scholar
  12. Vishwanath,R. I. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83– 87 (1999).
    Article Google Scholar
  13. Wen,X. et al. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl Acad. Sci. USA 95, 334–339 (1998).
    Article ADS CAS Google Scholar
  14. Fambrough,D., McClure,K., Kazlauskas,A. & Lander,E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).
    Article CAS Google Scholar
  15. Eisen,M. B., Spellman,P. T., Brown,P. O. & Botstein,D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).
    Article ADS CAS Google Scholar
  16. Gawantka,V. et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141 (1998).
    Article CAS Google Scholar
  17. Niehrs,C. Gene-expression screens in vertebrate embryos: more than meets the eye. Genes Funct. 1, 229–231 (1997).
    Article CAS Google Scholar
  18. Onichtchouk,D. et al. The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controling dorso–ventral patterning of Xenopus mesoderm. Development 122, 3045–3053 (1996).
    CAS PubMed Google Scholar
  19. Jen, W. -C., Gawantka,V., Pollet,N., Niehrs,C. & Kintner,C. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev. 13, 1486–1499 (1999).
    Article Google Scholar
  20. Dandekar,T., Snel,B., Huynen,M. & Bork,P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 273, 324–328 (1998).
    Article Google Scholar
  21. Jacob,F. The operon—25 years later. C. R. Acad. Sci. Paris 320, 199–206 (1997).
    Article CAS Google Scholar
  22. Lawrence,J. G. Selfish operons and speciation by gene transfer. Trends Microbiol. 5, 355–359 ( 1997).
    Article CAS Google Scholar
  23. Blattner,F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 ( 1997).
    Article CAS Google Scholar
  24. Blumenthal,T. Gene clusters and polycistronic transcription in eukaryotes. BioEssays 20, 480–487 ( 1998).
    Article CAS Google Scholar
  25. McInerny,C. J., Partridge,J. F., Mikesell,G. E., Creemer,D. P. & Breeden,L. L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11, 1277–1288 (1997).
    Article CAS Google Scholar
  26. Yuh,C. H., Bolouri,H. & Davidson,E. H. Genomic _cis_-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).
    Article ADS CAS Google Scholar
  27. Britten,R. J. & Davidson,E. H. Gene regulation for higher cells: a theory. Science 165, 349– 357 (1969).
    Article ADS CAS Google Scholar
  28. Gerhart,J. & Kirschner,M. Cells, Embryos and Evolution (Blackwell, Malden, 1997).
    Google Scholar
  29. Duboule,D. & Wilkins,A. S. The evolution of ’bricolage’. Trends Genet. 14, 54–59 (1998).
    Article CAS Google Scholar
  30. Huang,F. Syntagms in development and evolution. Int. J. Dev. Biol. 42, 487–494 (1998).
    CAS PubMed Google Scholar
  31. Jan,Y. N. & Jan,L. Y. Functional gene cassettes in development. Proc. Natl Acad. Sci. USA 90, 8305– 8307 (1993).
    Article ADS CAS Google Scholar
  32. Nishida,E. & Gotoh,Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131 ( 1993).
    Article CAS Google Scholar
  33. Cheverud,J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 ( 1996).
    Article Google Scholar
  34. Shubin,N., Tabin,C. & Carroll,S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 ( 1997).
    Article ADS CAS Google Scholar
  35. Artavanis-Tsakonas,S., Rand,M. D. & Lake,R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).
    Article ADS CAS Google Scholar
  36. Lagna,G., Hata,A., Hemmati-Brivanlou,A. & Massague,J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832–836 (1996).
    Article ADS CAS Google Scholar
  37. Meersman, G. et al. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in vivo and transcriptional activation. Mech. Develop. 61, 127–140 ( 1997).
    Article Google Scholar
  38. Bhushan,A., Chen,Y. & Vale,W. SMAD7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev. Biol. 200, 260– 268 (1998).
    Article CAS Google Scholar
  39. Frisch,A. & Wright,C. V. E. XBMPRII, a novel Xenopus type II receptor mediating BMP signalling in embryonic tissues. Development 125, 431–442 (1998).
    CAS PubMed Google Scholar
  40. Hata,A., Lagna,G., Massague,J. & Hemmati-Brivanlou,A. SMAD6 inhibits BMP/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes Dev. 12, 186– 197 (1998).
    Article CAS Google Scholar
  41. Onichtchouk,D. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 400, 480–485 (1999).
    Article ADS Google Scholar
  42. Wagner,G. P. in Advances in Artificial Life (eds Moran, F., Moreno, A., Merelo, J. J. & Chacon, P. ) 317–328 (Springer, Berlin, 1995).
    Google Scholar

Download references