NF-κB and STAT3 – key players in liver inflammation and cancer (original) (raw)
Dvorak HF . Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315:1650–1659. ArticleCASPubMed Google Scholar
Schafer M, Werner S . Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008; 9:628–638. ArticleCASPubMed Google Scholar
Ernst PB, Gold BD . The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 2000; 54:615–640. ArticleCASPubMed Google Scholar
Seeff LB . Introduction: The burden of hepatocellular carcinoma. Gastroenterology 2004; 127:S1–S4. ArticlePubMed Google Scholar
Balkwill F, Mantovani A . Inflammation and cancer: back to Virchow? Lancet 2001; 357:539–545. ArticleCASPubMed Google Scholar
Parkin DM, Bray FI, Devesa SS . Cancer burden in the year 2000. The global picture. Eur J Cancer 2001; 37 Suppl 8:S4–66. ArticleCASPubMed Google Scholar
Bosch FX, Ribes J, Diaz M, Cleries R . Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004; 127:S5–S16. ArticlePubMed Google Scholar
Tong MJ, el-Farra NS, Reikes AR, Co RL . Clinical outcomes after transfusion-associated hepatitis C. N Engl J Med 1995; 332:1463–1466. ArticleCASPubMed Google Scholar
Nakamoto Y, Kaneko S . Mechanisms of viral hepatitis induced liver injury. Curr Mol Med 2003; 3:537–544. ArticleCASPubMed Google Scholar
Herzer K, Sprinzl MF, Galle PR . Hepatitis viruses: live and let die. Liver Int 2007; 27:293–301. ArticleCASPubMed Google Scholar
Block TM, Mehta AS, Fimmel CJ, Jordan R . Molecular viral oncology of hepatocellular carcinoma. Oncogene 2003; 22:5093–5107. ArticleCASPubMed Google Scholar
Sen R, Baltimore D . Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986; 46:705–716. ArticleCASPubMed Google Scholar
Barnes PJ, Karin M . Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336:1066–1071. ArticleCASPubMed Google Scholar
Vallabhapurapu S, Karin M . Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 2009; 27:693–733. ArticleCASPubMed Google Scholar
Gilmore TD . The Re1/NF-κB/I κB signal transduction pathway and cancer. Cancer Treat Res 2003; 115:241–265. ArticleCASPubMed Google Scholar
Karin M, Cao Y, Greten FR, Li ZW . NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2:301–310. ArticleCASPubMed Google Scholar
Franzoso G, Bours V, Park S, Tomita-Yamaguchi M, Kelly K, Siebenlist U . The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-κB-mediated inhibition. Nature 1992; 359:339–342. ArticleCASPubMed Google Scholar
Bours V, Franzoso G, Azarenko V, et al. The oncoprotein Bcl-3 directly transactivates through κB motifs via association with DNA-binding p50B homodimers. Cell 1993; 72:729–739. ArticleCASPubMed Google Scholar
Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12:115–130. ArticleCASPubMedPubMed Central Google Scholar
Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 2007; 12:131–144. ArticleCASPubMedPubMed Central Google Scholar
Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D . Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 1995; 376:167–170. ArticleCASPubMed Google Scholar
Doi TS, Marino MW, Takahashi T, et al. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci USA 1999; 96:2994–2999. CASPubMedPubMed Central Google Scholar
Rosenfeld ME, Prichard L, Shiojiri N, Fausto N . Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am J Pathol 2000; 156:997–1007. ArticleCASPubMedPubMed Central Google Scholar
Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM . Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 1999; 284:321–325. ArticleCASPubMed Google Scholar
Tanaka M, Fuentes ME, Yamaguchi K, et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 1999; 10:421–429. ArticleCASPubMed Google Scholar
Rudolph D, Yeh WC, Wakeham A, et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKgamma-deficient mice. Genes Dev 2000; 14:854–862. CASPubMedPubMed Central Google Scholar
Makris C, Godfrey VL, Krahn-Senftleben G, et al. Female mice heterozygous for IKK γ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 2000; 5:969–979. ArticleCASPubMed Google Scholar
Luedde T, Assmus U, Wustefeld T, et al. Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 2005; 115:849–859. ArticleCASPubMedPubMed Central Google Scholar
Maeda S, Chang L, Li ZW, Luo JL, Leffert H, Karin M . IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα. Immunity 2003; 19:725–737. ArticleCASPubMed Google Scholar
Luedde T, Heinrichsdorff J, de Lorenzi R, De Vos R, Roskams T, Pasparakis M . IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proc Natl Acad Sci USA 2008; 105:9733–9738. ArticleCASPubMedPubMed Central Google Scholar
Luedde T, Beraza N, Kotsikoris V, et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11:119–132. ArticleCASPubMed Google Scholar
Greten FR, Eckmann L, Greten TF, et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118:285–296. ArticleCASPubMed Google Scholar
Verna L, Whysner J, Williams GM . N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther 1996; 71:57–81. ArticleCASPubMed Google Scholar
Lai DY, Arcos JC . Minireview: dialkylnitrosamine bioactivation and carcinogenesis. Life Sci 1980; 27:2149–2165. ArticleCASPubMed Google Scholar
Fausto N . Mouse liver tumorigenesis: models, mechanisms, and relevance to human disease. Semin Liver Dis 1999; 19:243–252. ArticleCASPubMed Google Scholar
Maeda S, Kamata H, Luo JL, Leffert H, Karin M . IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121:977–990. ArticleCASPubMed Google Scholar
Luo JL, Kamata H, Karin M . IKK/NF-κB signaling: balancing life and death--a new approach to cancer therapy. J Clin Invest 2005; 115:2625–2632. ArticleCASPubMedPubMed Central Google Scholar
Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120:649–661. ArticleCASPubMed Google Scholar
Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 2004; 119:529–542. ArticleCASPubMed Google Scholar
Sakurai T, Maeda S, Chang L, Karin M . Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA 2006; 103:10544–10551. ArticleCASPubMedPubMed Central Google Scholar
Pikarsky E, Porat RM, Stein I, et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431:461–466. ArticleCASPubMed Google Scholar
Mauad TH, van Nieuwkerk CM, Dingemans KP, et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol 1994; 145:1237–1245. CASPubMedPubMed Central Google Scholar
Maeda S, Hikiba Y, Sakamoto K, et al. IκB kinasebeta/nuclear factor-κB activation controls the development of liver metastasis by way of interleukin-6 expression. Hepatology 2009; 50:1851–1860. ArticleCASPubMed Google Scholar
Sakurai T, He G, Matsuzawa A, et al. Hepatocyte necrosis induced by oxidative stress and IL-1 α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008; 14:156–165. ArticleCASPubMedPubMed Central Google Scholar
Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317:121–124. ArticleCASPubMed Google Scholar
Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 1992; 257:88–91. ArticleCASPubMed Google Scholar
Ershler WB, Keller ET . Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 2000; 51:245–270. ArticleCASPubMed Google Scholar
Tilg H, Wilmer A, Vogel W, et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology 1992; 103:264–274. ArticleCASPubMed Google Scholar
Trikha M, Corringham R, Klein B, Rossi JF . Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 2003; 9:4653–4665. CASPubMedPubMed Central Google Scholar
Nakagawa H, Maeda S, Yoshida H, et al. Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: an analysis based on gender differences. Int J Cancer 2009; 125:2264–2269. ArticleCASPubMed Google Scholar
Wong VW, Yu J, Cheng AS, et al. High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer 2009; 124:2766–2770. ArticleCASPubMed Google Scholar
Wegenka UM, Buschmann J, Lutticken C, Heinrich PC, Horn F . Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 1993; 13:276–288. ArticleCASPubMedPubMed Central Google Scholar
Zhong Z, Wen Z, Darnell JE Jr . Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264:95–98. ArticleCASPubMed Google Scholar
Takeda K, Akira S . STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 2000; 11:199–207. ArticleCASPubMed Google Scholar
Hirano T, Ishihara K, Hibi M . Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19:2548–2556. ArticleCASPubMed Google Scholar
Yoshimura A, Naka T, Kubo M . SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007; 7:454–465. ArticleCASPubMed Google Scholar
Wen Z, Zhong Z, Darnell JE Jr . Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995; 82:241–250. ArticleCASPubMed Google Scholar
Yuan ZL, Guan YJ, Chatterjee D, Chin YE . Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 2005; 307:269–273. ArticleCASPubMed Google Scholar
Kubo M, Hanada T, Yoshimura A . Suppressors of cytokine signaling and immunity. Nat Immunol 2003; 4:1169–1176. ArticleCASPubMed Google Scholar
Al Zaid Siddiquee K, Turkson J . STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 2008; 18:254–267. ArticleCASPubMed Google Scholar
He G, Yu GY, Temkin V, et al. Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010; 17:286–297. ArticleCASPubMedPubMed Central Google Scholar
Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130:1117–1128. ArticleCASPubMed Google Scholar
Rebouissou S, Amessou M, Couchy G, et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 2009; 457:200–204. ArticleCASPubMed Google Scholar
El-Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132:2557–2576. ArticleCASPubMed Google Scholar
Parekh S, Anania FA . Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 2007; 132:2191–2207. ArticleCASPubMed Google Scholar
Wang T, Weinman SA . Causes and consequences of mitochondrial reactive oxygen species generation in hepatitis C. J Gastroenterol Hepatol 2006; 21 Suppl 3:S34–S37. ArticleCASPubMed Google Scholar
Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997; 94:3801–3804. ArticleCASPubMedPubMed Central Google Scholar
Raz R, Lee CK, Cannizzaro LA, d'Eustachio P, Levy DE . Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA 1999; 96:2846–2851. ArticleCASPubMedPubMed Central Google Scholar
Matsuda T, Nakamura T, Nakao K, et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 1999; 18:4261–4269. ArticleCASPubMedPubMed Central Google Scholar
Chan KS, Sano S, Kiguchi K, et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Invest 2004; 114:720–728. ArticleCASPubMedPubMed Central Google Scholar
Bollrath J, Phesse TJ, von Burstin VA, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009; 15:91–102. ArticleCASPubMed Google Scholar
Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15:103–113. ArticleCASPubMedPubMed Central Google Scholar
Inghirami G, Chiarle R, Simmons WJ, Piva R, Schlessinger K, Levy DE . New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle 2005; 4:1131–1133. ArticleCASPubMed Google Scholar
Chiarle R, Simmons WJ, Cai H, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005; 11:623–629. ArticleCASPubMed Google Scholar
Fletcher S, Drewry JA, Shahani VM, Page BD, Gunning PT . Molecular disruption of oncogenic signal transducer and activator of transcription 3 (STAT3) protein. Biochem Cell Biol 2009; 87:825–833. ArticleCASPubMed Google Scholar
Siddiquee K, Zhang S, Guida WC, et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 2007; 104:7391–7396. ArticleCASPubMedPubMed Central Google Scholar
Lin L, Amin R, Gallicano GI, et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling. Oncogene 2009; 28:961–972. ArticleCASPubMedPubMed Central Google Scholar
Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996; 379:645–648. ArticleCASPubMed Google Scholar
Yang J, Chatterjee-Kishore M, Staugaitis SM, et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 2005; 65:939–947. CASPubMed Google Scholar
Li WC, Ye SL, Sun RX, et al. Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res 2006; 12:7140–7148. ArticleCASPubMed Google Scholar
Hedvat M, Huszar D, Herrmann A, et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 2009; 16:487–497. ArticleCASPubMedPubMed Central Google Scholar
Grivennikov SI, Karin M . Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 2010; 21:11–19. ArticleCASPubMed Google Scholar
Atkinson GP, Nozell SE, Benveniste ET . NF-κB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 2010; 10:575–586. ArticleCASPubMed Google Scholar
Bollrath J, Greten FR . IKK/NF-κB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 2009; 10:1314–1319. ArticleCASPubMedPubMed Central Google Scholar
Valentino L, Pierre J . JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 2006; 71:713–721. ArticleCASPubMed Google Scholar
Hsu L-C, Enzler T, Seita J, et al. IL-1β-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKβ. Nat Immunol 2010; in press.
Lee H, Herrmann A, Deng JH, et al. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 2009; 15:283–293. ArticleCASPubMedPubMed Central Google Scholar
Chen L, Fischle W, Verdin E, Greene WC . Duration of nuclear NF-κB action regulated by reversible acetylation. Science 2001; 293:1653–1657. ArticleCAS Google Scholar
Bruix J, Sherman M . Management of hepatocellular carcinoma. Hepatology 2005; 42:1208–1236. ArticlePubMed Google Scholar
Park EJ, Lee JH, Yu GY, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140:197–208. ArticleCASPubMedPubMed Central Google Scholar