Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 2005; 53: 1087–1097. ArticleCASPubMed Google Scholar
Katsuura G, Asakawa A, Inui A . Roles of pancreatic polypeptide in regulation of food intake. Peptides 2002; 23: 323–329. ArticleCASPubMed Google Scholar
Wierup N, Svensson H, Mulder H, Sundler F . The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 2002; 107: 63–69. ArticleCASPubMed Google Scholar
Goke B . Islet cell function: alpha and beta cells—partners towards normoglycaemia. Int J Clin Pract Suppl 2008; 159: 2–7. ArticleCAS Google Scholar
Hauge-Evans AC, King AJ, Carmignac D, Richardson CC, Robinson IC, Low MJ et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 2009; 58: 403–411. ArticleCASPubMedPubMed Central Google Scholar
Batterham RL, Le Roux CW, Cohen MA, Park AJ, Ellis SM, Patterson M et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 2003; 88: 3989–3992. ArticleCASPubMed Google Scholar
Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A . The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 2006; 103: 2334–2339. ArticleCASPubMedPubMed Central Google Scholar
Freychet L, Rizkalla SW, Desplanque N, Basdevant A, Zirinis P, Tchobroutsky G et al. Effect of intranasal glucagon on blood glucose levels in healthy subjects and hypoglycaemic patients with insulin-dependent diabetes. Lancet 1988; 1: 1364–1366. ArticleCASPubMed Google Scholar
Komatsu M, Takei M, Ishii H, Sato Y . Glucose-stimulated insulin secretion: a newer perspective. J Diabetes Investig 2013; 4: 511–516. ArticleCASPubMedPubMed Central Google Scholar
Khan AH, Pessin JE . Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 2002; 45: 1475–1483. ArticleCASPubMed Google Scholar
Kohn AD, Summers SA, Birnbaum MJ, Roth RA . Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271: 31372–31378. ArticleCASPubMed Google Scholar
Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 2000; 6: 924–928. ArticleCASPubMed Google Scholar
Sibrowski W, Seitz HJ . Rapid action of insulin and cyclic AMP in the regulation of functional messenger RNA coding for glucokinase in rat liver. J Biol Chem 1984; 259: 343–346. CASPubMed Google Scholar
Kim SY, Kim HI, Kim TH, Im SS, Park SK, Lee IK et al. SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem 2004; 279: 30823–30829. ArticleCASPubMed Google Scholar
Aiston S, Hampson LJ, Arden C, Iynedjian PB, Agius L . The role of protein kinase B/Akt in insulin-induced inactivation of phosphorylase in rat hepatocytes. Diabetologia 2006; 49: 174–182. ArticleCASPubMed Google Scholar
Syed NA, Khandelwal RL . Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells. Mol Cell Biochem 2000; 211: 123–136. ArticleCASPubMed Google Scholar
Miller TB Jr, Larner J . Mechanism of control of hepatic glycogenesis by insulin. J Biol Chem 1973; 248: 3483–3488. CASPubMed Google Scholar
Akpan JO, Gardner R, Wagle SR . Studies on the effects of insulin and acetylcholine on activation of glycogen synthase and on glycogenesis in hepatocytes. Biochem Biophys Res Commun 1974; 61: 222–229. ArticleCASPubMed Google Scholar
Stalmans W, De Wulf H, Hue L, Hers HG . The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem 1974; 41: 127–134. ArticleCASPubMed Google Scholar
O'Brien RM, Lucas PC, Forest CD, Magnuson MA, Granner DK . Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science 1990; 249: 533–537. ArticleCASPubMed Google Scholar
Streeper RS, Svitek CA, Chapman S, Greenbaum LE, Taub R, O'Brien RM . A multicomponent insulin response sequence mediates a strong repression of mouse glucose-6-phosphatase gene transcription by insulin. J Biol Chem 1997; 272: 11698–11701. ArticleCASPubMed Google Scholar
Duong DT, Waltner-Law ME, Sears R, Sealy L, Granner DK . Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 2002; 277: 32234–32242. ArticleCASPubMed Google Scholar
Nakae J, Kitamura T, Silver DL, Accili D . The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 2001; 108: 1359–1367. ArticleCASPubMedPubMed Central Google Scholar
Schmoll D, Walker KS, Alessi DR, Grempler R, Burchell A, Guo S et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem 2000; 275: 36324–36333. ArticleCASPubMed Google Scholar
Lochhead PA, Coghlan M, Rice SQ, Sutherland C . Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 2001; 50: 937–946. ArticleCASPubMed Google Scholar
Walton PE, Etherton TD . Stimulation of lipogenesis by insulin in swine adipose tissue: antagonism by porcine growth hormone. J Anim Sci 1986; 62: 1584–1595. ArticleCASPubMed Google Scholar
McTernan PG, Harte AL, Anderson LA, Green A, Smith SA, Holder JC et al. Insulin and rosiglitazone regulation of lipolysis and lipogenesis in human adipose tissue in vitro. Diabetes 2002; 51: 1493–1498. ArticleCASPubMed Google Scholar
Biolo G, Declan Fleming RY, Wolfe RR . Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 1995; 95: 811–819. ArticleCASPubMedPubMed Central Google Scholar
Ashcroft FM, Proks P, Smith PA, Ammala C, Bokvist K, Rorsman P . Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem 1994; 55 Suppl: 54–65. ArticleCASPubMed Google Scholar
Henquin JC . Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000; 49: 1751–1760. ArticleCASPubMed Google Scholar
Cerasi E, Luft R . The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta Endocrinol (Copenh) 1967; 55: 278–304. ArticleCAS Google Scholar
Curry DL, Bennett LL, Grodsky GM . Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 1968; 83: 572–584. ArticleCASPubMed Google Scholar
Hao M, Li X, Rizzo MA, Rocheleau JV, Dawant BM, Piston DW . Regulation of two insulin granule populations within the reserve pool by distinct calcium sources. J Cell Sci 2005; 118 (Pt 24): 5873–5884. ArticleCASPubMed Google Scholar
Olofsson CS, Gopel SO, Barg S, Galvanovskis J, Ma X, Salehi A et al. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch 2002; 444: 43–51. ArticleCASPubMed Google Scholar
Thurmond DC . Regulation of Insulin Action and Insulin Secretion by SNARE-Mediated Vesicle Exocytosis. Landes Bioscience: Austin, TX, USA, 2000. Google Scholar
Chapman ER, An S, Barton N, Jahn R . SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J Biol Chem 1994; 269: 27427–27432. CASPubMed Google Scholar
Fasshauer D, Otto H, Eliason WK, Jahn R, Brunger AT . Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol Chem 1997; 272: 28036–28041. ArticleCASPubMed Google Scholar
Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 2001; 31: 581–591. ArticleCASPubMed Google Scholar
Lam PP, Ohno M, Dolai S, He Y, Qin T, Liang T et al. Munc18b is a major mediator of insulin exocytosis in rat pancreatic beta-cells. Diabetes 2013; 62: 2416–2428. ArticleCASPubMedPubMed Central Google Scholar
Foster LJ, Yeung B, Mohtashami M, Ross K, Trimble WS, Klip A . Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry 1998; 37: 11089–11096. ArticleCASPubMed Google Scholar
Ravichandran V, Chawla A, Roche PA . Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 1996; 271: 13300–13303. ArticleCASPubMed Google Scholar
Leung YM, Kwan EP, Ng B, Kang Y, Gaisano HY . SNAREing voltage-gated K+ and ATP-sensitive K+ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr Rev 2007; 28: 653–663. ArticleCASPubMed Google Scholar
Regazzi R, Wollheim CB, Lang J, Theler JM, Rossetto O, Montecucco C et al. VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion. EMBO J 1995; 14: 2723–2730. ArticleCASPubMedPubMed Central Google Scholar
Zhu D, Koo E, Kwan E, Kang Y, Park S, Xie H et al. Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia 2013; 56: 359–369. ArticleCASPubMed Google Scholar
Zhu D, Zhang Y, Lam PP, Dolai S, Liu Y, Cai EP et al. Dual role of VAMP8 in regulating insulin exocytosis and islet beta cell growth. Cell Metab 2012; 16: 238–249. ArticleCASPubMed Google Scholar
Gustavsson N, Han W . Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci Rep 2009; 29: 245–259. ArticleCASPubMed Google Scholar
Gut A, Kiraly CE, Fukuda M, Mikoshiba K, Wollheim CB, Lang J . Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. J Cell Sci 2001; 114 (Pt 9): 1709–1716. CASPubMed Google Scholar
Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK et al. Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+ -induced glucagon exocytosis in pancreas. J Physiol 2009; 587 (Pt 6): 1169–1178. ArticleCASPubMedPubMed Central Google Scholar
Mizuta M, Kurose T, Miki T, Shoji-Kasai Y, Takahashi M, Seino S et al. Localization and functional role of synaptotagmin III in insulin secretory vesicles in pancreatic beta-cells. Diabetes 1997; 46: 2002–2006. ArticleCASPubMed Google Scholar
Iezzi M, Kouri G, Fukuda M, Wollheim CB . Synaptotagmin V and IX isoforms control Ca2+ -dependent insulin exocytosis. J Cell Sci 2004; 117 (Pt 15): 3119–3127. ArticleCASPubMed Google Scholar
Sadana R, Dessauer CW . Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 2009; 17: 5–22. ArticleCASPubMed Google Scholar
Das R, Esposito V, Abu-Abed M, Anand GS, Taylor SS, Melacini G . cAMP activation of PKA defines an ancient signaling mechanism. Proc Natl Acad Sci USA 2007; 104: 93–98. ArticleCASPubMed Google Scholar
Li S, Tsalkova T, White MA, Mei FC, Liu T, Wang D et al. Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational changes identified by amide hydrogen/deuterium exchange mass spectrometry (DXMS). J Biol Chem 2011; 286: 17889–17897. ArticleCASPubMedPubMed Central Google Scholar
Leech CA, Chepurny OG, Holz GG . Epac2-dependent rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1. Vitam Horm 2010; 84: 279–302. ArticleCASPubMedPubMed Central Google Scholar
Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL et al. Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem 2003; 278: 8279–8285. ArticleCASPubMed Google Scholar
Dzhura I, Chepurny OG, Kelley GG, Leech CA, Roe MW, Dzhura E et al. Epac2-dependent mobilization of intracellular Ca(2)+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in beta-cells of phospholipase C-epsilon knockout mice. J Physiol 2010; 588 (Pt 24): 4871–4889. ArticleCASPubMedPubMed Central Google Scholar
Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 2007; 104: 19333–19338. ArticleCASPubMedPubMed Central Google Scholar
Beguin P, Nagashima K, Nishimura M, Gonoi T, Seino S . PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J 1999; 18: 4722–4732. ArticleCASPubMedPubMed Central Google Scholar
Ribalet B, Ciani S, Eddlestone GT . ATP mediates both activation and inhibition of K(ATP) channel activity via cAMP-dependent protein kinase in insulin-secreting cell lines. J Gen Physiol 1989; 94: 693–717. ArticleCASPubMed Google Scholar
Kanno T, Suga S, Wu J, Kimura M, Wakui M . Intracellular cAMP potentiates voltage-dependent activation of L-type Ca2+ channels in rat islet beta-cells. Pflugers Arch 1998; 435: 578–580. ArticleCASPubMed Google Scholar
Safayhi H, Haase H, Kramer U, Bihlmayer A, Roenfeldt M, Ammon HP et al. L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol 1997; 11: 619–629. ArticleCASPubMed Google Scholar
Wan QF, Dong Y, Yang H, Lou X, Ding J, Xu T . Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 2004; 124: 653–662. ArticleCASPubMedPubMed Central Google Scholar
Renstrom E, Eliasson L, Rorsman P . Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 1997; 502 (Pt 1): 105–118. ArticleCASPubMedPubMed Central Google Scholar
Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM . Glucose sensing in L cells: a primary cell study. Cell Metab 2008; 8: 532–539. ArticleCASPubMedPubMed Central Google Scholar
Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F . Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 2009; 52: 289–298. ArticleCASPubMed Google Scholar
Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V . Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993; 138: 159–166. ArticleCASPubMed Google Scholar
Kuhre RE, Gribble FM, Hartmann B, Reimann F, Windelov JA, Rehfeld JF et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am J Physiol Gastrointest Liver Physiol 2014; 306: G622–G630. ArticleCASPubMedPubMed Central Google Scholar
Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM . Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004; 47: 1592–1601. ArticleCASPubMed Google Scholar
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364–371. ArticleCASPubMedPubMed Central Google Scholar
Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005; 11: 90–94. ArticleCASPubMed Google Scholar
Schauder P, Brown JC, Frerichs H, Creutzfeldt W . Gastric inhibitory polypeptide: effect on glucose-induced insulin release from isolated rat pancreatic islets in vitro. Diabetologia 1975; 11: 483–484. ArticleCASPubMed Google Scholar
Dupre J, Ross SA, Watson D, Brown JC . Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826–828. ArticleCASPubMed Google Scholar
Kreymann B, Williams G, Ghatei MA, Bloom SR . Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; 2: 1300–1304. ArticleCASPubMed Google Scholar
Moens K, Heimberg H, Flamez D, Huypens P, Quartier E, Ling Z et al. Expression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells. Diabetes 1996; 45: 257–261. ArticleCASPubMed Google Scholar
Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF . Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 1987; 84: 3434–3438. ArticleCASPubMedPubMed Central Google Scholar
Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR . Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol 2008; 132: 329–338. ArticleCASPubMedPubMed Central Google Scholar
Holz GGt 4th, Leech CA, Habener JF . Activation of a cAMP-regulated Ca(2+)-signaling pathway in pancreatic beta-cells by the insulinotropic hormone glucagon-like peptide-1. J Biol Chem 1995; 270: 17749–17757. ArticleCASPubMed Google Scholar
Wheeler MB, Gelling RW, McIntosh CH, Georgiou J, Brown JC, Pederson RA . Functional expression of the rat pancreatic islet glucose-dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties. Endocrinology 1995; 136: 4629–4639. ArticleCASPubMed Google Scholar
Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE 3rd . Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 1993; 133: 57–62. ArticleCASPubMed Google Scholar
Volz A, Goke R, Lankat-Buttgereit B, Fehmann HC, Bode HP, Goke B . Molecular cloning, functional expression, and signal transduction of the GIP-receptor cloned from a human insulinoma. FEBS Lett 1995; 373: 23–29. ArticleCASPubMed Google Scholar
Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF . cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem 1999; 274: 14147–14156. ArticleCASPubMed Google Scholar
Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS et al. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes 1995; 44: 767–774. ArticleCASPubMed Google Scholar
Lu M, Wheeler MB, Leng XH, Boyd AE 3rd . The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide I(7-37). Endocrinology 1993; 132: 94–100. ArticleCASPubMed Google Scholar
Fridolf T, Ahren B . Effects of glucagon like peptide-1(7-36) amide on the cytoplasmic Ca(2+)-concentration in rat islet cells. Mol Cell Endocrinol 1993; 96: 85–90. ArticleCASPubMed Google Scholar
Cullinan CA, Brady EJ, Saperstein R, Leibowitz MD . Glucose-dependent alterations of intracellular free calcium by glucagon-like peptide-1(7-36amide) in individual ob/ob mouse beta-cells. Cell Calcium 1994; 15: 391–400. ArticleCASPubMed Google Scholar
Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C . Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 1993; 42: 1678–1682. ArticleCASPubMed Google Scholar
Song WJ, Seshadri M, Ashraf U, Mdluli T, Mondal P, Keil M et al. Snapin mediates incretin action and augments glucose-dependent insulin secretion. Cell Metab 2011; 13: 308–319. ArticleCASPubMedPubMed Central Google Scholar
Wu B, Wei S, Petersen N, Ali Y, Wang X, Bacaj T et al. Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from beta-cells. Proc Natl Acad Sci USA 2015; 112: 9996–10001. ArticleCASPubMedPubMed Central Google Scholar
Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD . Role of GPR40 in fatty acid action on the beta cell line INS-1E. Biochem Biophys Res Commun 2005; 335: 97–104. ArticleCASPubMed Google Scholar
Fujiwara K, Maekawa F, Yada T . Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab 2005; 289: E670–E677. ArticleCASPubMed Google Scholar
Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Owman C et al. Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 2005; 322: 207–215. ArticleCASPubMed Google Scholar
Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003; 422: 173–176. ArticleCASPubMed Google Scholar
Ximenes HM, Hirata AE, Rocha MS, Curi R, Carpinelli AR . Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochem Funct 2007; 25: 173–178. ArticleCASPubMed Google Scholar
Porte D Jr, Williams RH . Inhibition of insulin release by norepinephrine in man. Science 1966; 152: 1248–1250. ArticleCASPubMed Google Scholar
Peterhoff M, Sieg A, Brede M, Chao CM, Hein L, Ullrich S . Inhibition of insulin secretion via distinct signaling pathways in alpha2-adrenoceptor knockout mice. Eur J Endocrinol 2003; 149: 343–350. ArticleCASPubMed Google Scholar
Rossi J, Santamaki P, Airaksinen MS, Herzig KH . Parasympathetic innervation and function of endocrine pancreas requires the glial cell line-derived factor family receptor alpha2 (GFRalpha2). Diabetes 2005; 54: 1324–1330. ArticleCASPubMed Google Scholar
Yoshimatsu H, Niijima A, Oomura Y, Yamabe K, Katafuchi T . Effects of hypothalamic lesion on pancreatic autonomic nerve activity in the rat. Brain Res 1984; 303: 147–152. ArticleCASPubMed Google Scholar
Borden P, Houtz J, Leach SD, Kuruvilla R . Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 2013; 4: 287–301. ArticleCASPubMedPubMed Central Google Scholar
Hopkins DF, Williams G . Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med 1997; 14: 1044–1050. ArticleCASPubMed Google Scholar
Ho L, Yemul S, Knable L, Katsel P, Zhao R, Haroutunian V et al. Insulin receptor expression and activity in the brains of nondiabetic sporadic Alzheimer's disease cases. Int J Alzheimers Dis 2012; 2012: 321280. PubMedPubMed Central Google Scholar
Hill JM, Lesniak MA, Pert CB, Roth J . Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 1986; 17: 1127–1138. ArticleCASPubMed Google Scholar
Marks JL, Porte D Jr, Stahl WL, Baskin DG . Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 1990; 127: 3234–3236. ArticleCASPubMed Google Scholar
Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L . Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002; 5: 566–572. ArticleCASPubMed Google Scholar
Young WS 3rd . Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 1986; 8: 93–97. ArticleCASPubMed Google Scholar
Mirshamsi S, Laidlaw HA, Ning K, Anderson E, Burgess LA, Gray A et al. Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation. BMC Neurosci 2004; 5: 54. ArticlePubMedPubMed CentralCAS Google Scholar
Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 2004; 53: 1959–1965. ArticleCASPubMed Google Scholar
Berthoud HR, Jeanrenaud B . Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 1979; 105: 146–151. ArticleCASPubMed Google Scholar
Rohner-Jeanrenaud F, Jeanrenaud B . Consequences of ventromedial hypothalamic lesions upon insulin and glucagon secretion by subsequently isolated perfused pancreases in the rat. J Clin Invest 1980; 65: 902–910. ArticleCASPubMedPubMed Central Google Scholar
Goto Y, Carpenter RG, Berelowitz M, Frohman LA . Effect of ventromedial hypothalamic lesions on the secretion of somatostatin, insulin, and glucagon by the perfused rat pancreas. Metabolism 1980; 29: 986–990. ArticleCASPubMed Google Scholar
Rohner F, Dufour AC, Karakash C, Le Marchand Y, Ruf KB, Jeanrenaud B . Immediate effect of lesion of the ventromedial hypothalamic area upon glucose-induced insulin secretion in anaesthetized rats. Diabetologia 1977; 13: 239–242. ArticleCASPubMed Google Scholar
Hanyu O, Yamatani K, Ikarashi T, Soda S, Maruyama S, Kamimura T et al. Brain-derived neurotrophic factor modulates glucagon secretion from pancreatic alpha cells: its contribution to glucose metabolism. Diabetes Obes Metab 2003; 5: 27–37. ArticleCASPubMed Google Scholar
Gotoh K, Masaki T, Chiba S, Ando H, Fujiwara K, Shimasaki T et al. Hypothalamic brain-derived neurotrophic factor regulates glucagon secretion mediated by pancreatic efferent nerves. J Neuroendocrinol 2013; 25: 302–311. ArticleCASPubMed Google Scholar
Fan W, Dinulescu DM, Butler AA, Zhou J, Marks DL, Cone RD . The central melanocortin system can directly regulate serum insulin levels. Endocrinology 2000; 141: 3072–3079. ArticleCASPubMed Google Scholar
Malaisse W, Malaisse-Lagae F, Wright PH, Ashmore J . Effects of adrenergic and cholinergic agents upon insulin secretion in vitro. Endocrinology 1967; 80: 975–978. ArticleCASPubMed Google Scholar
Vettor R, Pagano C, Granzotto M, Englaro P, Angeli P, Blum WF et al. Effects of intravenous neuropeptide Y on insulin secretion and insulin sensitivity in skeletal muscle in normal rats. Diabetologia 1998; 41: 1361–1367. ArticleCASPubMed Google Scholar
Moltz JH, McDonald JK . Neuropeptide Y: direct and indirect action on insulin secretion in the rat. Peptides 1985; 6: 1155–1159. ArticleCASPubMed Google Scholar
Imai Y, Patel HR, Hawkins EJ, Doliba NM, Matschinsky FM, Ahima RS . Insulin secretion is increased in pancreatic islets of neuropeptide Y-deficient mice. Endocrinology 2007; 148: 5716–5723. ArticleCASPubMed Google Scholar
Morgan DG, Kulkarni RN, Hurley JD, Wang ZL, Wang RM, Ghatei MA et al. Inhibition of glucose stimulated insulin secretion by neuropeptide Y is mediated via the Y1 receptor and inhibition of adenylyl cyclase in RIN 5AH rat insulinoma cells. Diabetologia 1998; 41: 1482–1491. ArticleCASPubMed Google Scholar
Schwetz TA, Ustione A, Piston DW . Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms. Am J Physiol Endocrinol Metab 2013; 304: E211–E221. ArticleCASPubMed Google Scholar
Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 2006; 3: 449–461. ArticleCASPubMed Google Scholar
Schebalin M, Said SI, Makhlouf GM . Stimulation of insulin and glucagon secretion by vasoactive intestinal peptide. Am J Physiol 1977; 232: E197–E200. CASPubMed Google Scholar
Filipsson K, Tornoe K, Holst J, Ahren B . Pituitary adenylate cyclase-activating polypeptide stimulates insulin and glucagon secretion in humans. J Clin Endocrinol Metab 1997; 82: 3093–3098. CASPubMed Google Scholar
Pissios P, Ozcan U, Kokkotou E, Okada T, Liew CW, Liu S et al. Melanin concentrating hormone is a novel regulator of islet function and growth. Diabetes 2007; 56: 311–319. ArticleCASPubMed Google Scholar
Borboni P, Porzio O, Pierucci D, Cicconi S, Magnaterra R, Federici M et al. Molecular and functional characterization of pituitary adenylate cyclase-activating polypeptide (PACAP-38)/vasoactive intestinal polypeptide receptors in pancreatic beta-cells and effects of PACAP-38 on components of the insulin secretory system. Endocrinology 1999; 140: 5530–5537. ArticleCASPubMed Google Scholar
Straub SG, Sharp GW . A wortmannin-sensitive signal transduction pathway is involved in the stimulation of insulin release by vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide. J Biol Chem 1996; 271: 1660–1668. ArticleCASPubMed Google Scholar
Gregersen S, Ahren B . Studies on the mechanisms by which gastrin releasing peptide potentiates glucose-induced insulin secretion from mouse islets. Pancreas 1996; 12: 48–57. ArticleCASPubMed Google Scholar
Pettersson M, Ahren B . Gastrin releasing peptide (GRP): effects on basal and stimulated insulin and glucagon secretion in the mouse. Peptides 1987; 8: 55–60. ArticleCASPubMed Google Scholar
Bellisle F, Louis-Sylvestre J, Demozay F, Blazy D, Le Magnen J . Cephalic phase of insulin secretion and food stimulation in humans: a new perspective. Am J Physiol 1985; 249 (6 Pt 1): E639–E645. CASPubMed Google Scholar
Woods SC, Alexander KR, Porte D Jr . Conditioned insulin secretion and hypoglycemia following repeated injections of tolbutamide in rats. Endocrinology 1972; 90: 227–231. ArticleCASPubMed Google Scholar
Stockhorst U, Steingruber HJ, Scherbaum WA . Classically conditioned responses following repeated insulin and glucose administration in humans. Behav Brain Res 2000; 110: 143–159. ArticleCASPubMed Google Scholar
Berthoud HR, Jeanrenaud B . Sham feeding-induced cephalic phase insulin release in the rat. Am J Physiol 1982; 242: E280–E285. CASPubMed Google Scholar
Power ML, Schulkin J . Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite 2008; 50: 194–206. ArticlePubMed Google Scholar
Ahren B, Holst JJ . The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes 2001; 50: 1030–1038. ArticleCASPubMed Google Scholar
Powley TL . Vagal circuitry mediating cephalic-phase responses to food. Appetite 2000; 34: 184–188. ArticleCASPubMed Google Scholar
Banks WA, Jaspan JB, Kastin AJ . Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 1997; 18: 1257–1262. ArticleCASPubMed Google Scholar
Woods SC, Lotter EC, McKay LD, Porte D Jr . Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979; 282: 503–505. ArticleCASPubMed Google Scholar
Woods SC, Stein LJ, McKay LD, Porte D Jr . Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol 1984; 247 (2 Pt 2): R393–R401. CASPubMed Google Scholar
Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ et al. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 2002; 22: 9048–9052. ArticleCASPubMedPubMed Central Google Scholar
Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 2003; 52: 227–231. ArticleCASPubMed Google Scholar
Xu AW, Kaelin CB, Takeda K, Akira S, Schwartz MW, Barsh GS . PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 2005; 115: 951–958. ArticleCASPubMedPubMed Central Google Scholar
Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 1992; 130: 3608–3616. ArticleCASPubMed Google Scholar
Flood JF, Morley JE . Increased food intake by neuropeptide Y is due to an increased motivation to eat. Peptides 1991; 12: 1329–1332. ArticleCASPubMed Google Scholar
Morley JE, Hernandez EN, Flood JF . Neuropeptide Y increases food intake in mice. Am J Physiol 1987; 253 (3 Pt 2): R516–R522. CASPubMed Google Scholar
Dube MG, Xu B, Crowley WR, Kalra PS, Kalra SP . Evidence that neuropeptide Y is a physiological signal for normal food intake. Brain Res 1994; 646: 341–344. ArticleCASPubMed Google Scholar
Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath TL, Tschop M . Central administration of ghrelin and agouti-related protein (83-132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 2004; 145: 4645–4652. ArticleCASPubMed Google Scholar
Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 1998; 139: 4428–4431. ArticleCASPubMed Google Scholar
Schwartz MW, Marks JL, Sipols AJ, Baskin DG, Woods SC, Kahn SE et al. Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food-deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats. Endocrinology 1991; 128: 2645–2647. ArticleCASPubMed Google Scholar
Carvalheira JB, Ribeiro EB, Araujo EP, Guimaraes RB, Telles MM, Torsoni M et al. Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia 2003; 46: 1629–1640. ArticleCASPubMed Google Scholar
Ikeda H, West DB, Pustek JJ, Figlewicz DP, Greenwood MR, Porte D Jr et al. Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite 1986; 7: 381–386. ArticleCASPubMed Google Scholar
Obici S, Zhang BB, Karkanias G, Rossetti L . Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002; 8: 1376–1382. ArticleCASPubMed Google Scholar
Gelling RW, Morton GJ, Morrison CD, Niswender KD, Myers MG Jr, Rhodes CJ et al. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab 2006; 3: 67–73. ArticleCASPubMed Google Scholar
Jiang G, Zhang BB . Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab 2003; 284: E671–E678. ArticleCASPubMed Google Scholar
Ramachandran C, Goris J, Waelkens E, Merlevede W, Walsh DA . The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J Biol Chem 1987; 262: 3210–3218. CASPubMed Google Scholar
Rath VL, Ammirati M, LeMotte PK, Fennell KF, Mansour MN, Danley DE et al. Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Mol Cell 2000; 6: 139–148. ArticleCASPubMed Google Scholar
Gao H, Leary JA . Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry. Anal Biochem 2004; 329: 269–275. ArticleCASPubMed Google Scholar
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413: 179–183. ArticleCASPubMed Google Scholar
Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413: 131–138. ArticleCASPubMed Google Scholar
Pilkis SJ, El-Maghrabi MR, McGrane M, Pilkis J, Claus TH . Regulation by glucagon of hepatic pyruvate kinase, 6-phosphofructo 1-kinase, and fructose-1,6-bisphosphatase. Fed Proc 1982; 41: 2623–2628. CASPubMed Google Scholar
Rosa JL, Ventura F, Tauler A, Bartrons R . Regulation of hepatic 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase gene expression by glucagon. J Biol Chem 1993; 268: 22540–22545. CASPubMed Google Scholar
Blair JB, Cimbala MA, Foster JL, Morgan RA . Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 3'-5'-monophosphate, and insulin in the perfused rat liver. J Biol Chem 1976; 251: 3756–3762. CASPubMed Google Scholar
Feliu JE, Hue L, Hers HG . Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes. Proc Natl Acad Sci USA 1976; 73: 2762–2766. ArticleCASPubMedPubMed Central Google Scholar
Riou JP, Claus TH, Pilkis SJ . Control of pyruvate kinase activity by glucagon in isolated hepatocytes. Biochem Biophys Res Commun 1976; 73: 591–599. ArticleCASPubMed Google Scholar
Decaux JF, Antoine B, Kahn A . Regulation of the expression of the L-type pyruvate kinase gene in adult rat hepatocytes in primary culture. J Biol Chem 1989; 264: 11584–11590. CASPubMed Google Scholar
Vaulont S, Munnich A, Decaux JF, Kahn A . Transcriptional and post-transcriptional regulation of L-type pyruvate kinase gene expression in rat liver. J Biol Chem 1986; 261: 7621–7625. CASPubMed Google Scholar
de Wulf H, Hers HG . The role of glucose, glucagon and glucocorticoids in the regulation of liver glycogen synthesis. Eur J Biochem 1968; 6: 558–564. ArticleCASPubMed Google Scholar
Hutson NJ, Brumley FT, Assimacopoulos FD, Harper SC, Exton JH . Studies on the alpha-adrenergic activation of hepatic glucose output. I. Studies on the alpha-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. J Biol Chem 1976; 251: 5200–5208. CASPubMed Google Scholar
Ciudad C, Camici M, Ahmad Z, Wang Y, DePaoli-Roach AA, Roach PJ . Control of glycogen synthase phosphorylation in isolated rat hepatocytes by epinephrine, vasopressin and glucagon. Eur J Biochem 1984; 142: 511–520. ArticleCASPubMed Google Scholar
Aiston S, Coghlan MP, Agius L . Inactivation of phosphorylase is a major component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Eur J Biochem 2003; 270: 2773–2781. ArticleCASPubMed Google Scholar
Hale MA, Kagami H, Shi L, Holland AM, Elsasser HP, Hammer RE et al. The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Dev Biol 2005; 286: 225–237. ArticleCASPubMed Google Scholar
Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H . beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998; 12: 1763–1768. ArticleCASPubMedPubMed Central Google Scholar
Wu KL, Gannon M, Peshavaria M, Offield MF, Henderson E, Ray M et al. Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene. Mol Cell Biol 1997; 17: 6002–6013. ArticleCASPubMedPubMed Central Google Scholar
Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A et al. Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Invest 1998; 101: 2215–2222. ArticleCASPubMedPubMed Central Google Scholar
Vaxillaire M, Rouard M, Yamagata K, Oda N, Kaisaki PJ, Boriraj VV et al. Identification of nine novel mutations in the hepatocyte nuclear factor 1 alpha gene associated with maturity-onset diabetes of the young (MODY3). Hum Mol Genet 1997; 6: 583–586. ArticleCASPubMed Google Scholar
Wang Y, Quagliarini F, Gusarova V, Gromada J, Valenzuela DM, Cohen JC et al. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci USA 2013; 110: 16109–16114. ArticleCASPubMedPubMed Central Google Scholar
Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S et al. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 2014; 159: 691–696. ArticleCASPubMedPubMed Central Google Scholar
Jiao Y, Le Lay J, Yu M, Naji A, Kaestner KH . Elevated mouse hepatic betatrophin expression does not increase human beta-cell replication in the transplant setting. Diabetes 2014; 63: 1283–1288. ArticleCASPubMedPubMed Central Google Scholar
Hu H, Sun W, Yu S, Hong X, Qian W, Tang B et al. Increased circulating levels of betatrophin in newly diagnosed type 2 diabetic patients. Diabetes Care 2014; 37: 2718–2722. ArticleCASPubMed Google Scholar
Chen X, Lu P, He W, Zhang J, Liu L, Yang Y et al. Circulating betatrophin levels are increased in patients with type 2 diabetes and associated with insulin resistance. J Clin Endocrinol Metab 2015; 100: E96–E100. ArticleCASPubMed Google Scholar
Fu Z, Berhane F, Fite A, Seyoum B, Abou-Samra AB, Zhang R . Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Sci Rep 2014; 4: 5013. ArticleCASPubMedPubMed Central Google Scholar
Gomez-Ambrosi J, Pascual E, Catalan V, Rodriguez A, Ramirez B, Silva C et al. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J Clin Endocrinol Metab 2014; 99: E2004–E2009. ArticleCASPubMed Google Scholar
Fu Z, Abou-Samra AB, Zhang R . An explanation for recent discrepancies in levels of human circulating betatrophin. Diabetologia 2014; 57: 2232–2234. ArticlePubMed Google Scholar
Buteau J, Roduit R, Susini S, Prentki M . Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999; 42: 856–864. ArticleCASPubMed Google Scholar
Buteau J, Foisy S, Joly E, Prentki M . Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 2003; 52: 124–132. ArticleCASPubMed Google Scholar
Perfetti R, Zhou J, Doyle ME, Egan JM . Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000; 141: 4600–4605. ArticleCASPubMed Google Scholar
Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D . Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 2001; 15: 1559–1570. CASPubMed Google Scholar
Ehses JA, Pelech SL, Pederson RA, McIntosh CH . Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 2002; 277: 37088–37097. ArticleCASPubMed Google Scholar
Kim SJ, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CH . Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 2005; 280: 22297–22307. ArticleCASPubMed Google Scholar
Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ . Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003; 278: 471–478. ArticleCASPubMed Google Scholar
Trumper A, Trumper K, Horsch D . Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells. J Endocrinol 2002; 174: 233–246. ArticleCASPubMed Google Scholar
Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M . Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 2004; 47: 806–815. ArticleCASPubMed Google Scholar
Prigeon RL, Quddusi S, Paty B, D'Alessio DA . Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol Endocrinol Metab 2003; 285: E701–E707. ArticleCASPubMed Google Scholar
Degn KB, Juhl CB, Sturis J, Jakobsen G, Brock B, Chandramouli V et al. ONE week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004; 53: 1187–1194. ArticleCASPubMed Google Scholar
Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA . Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996; 81: 327–332. CASPubMed Google Scholar
Zander M, Madsbad S, Madsen JL, Holst JJ . Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002; 359: 824–830. ArticleCASPubMed Google Scholar
Gutzwiller JP, Drewe J, Goke B, Schmidt H, Rohrer B, Lareida J et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999; 276 (5 Pt 2): R1541–R1544. CASPubMed Google Scholar
Kjems LL, Holst JJ, Volund A, Madsbad S . The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380–386. ArticleCASPubMed Google Scholar
Chang AM, Jakobsen G, Sturis J, Smith MJ, Bloem CJ, An B et al. The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose. Diabetes 2003; 52: 1786–1791. ArticleCASPubMed Google Scholar
Egan JM, Meneilly GS, Habener JF, Elahi D . Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab 2002; 87: 3768–3773. ArticleCASPubMed Google Scholar
Meneilly GS, McIntosh CH, Pederson RA, Habener JF, Gingerich R, Egan JM et al. Effect of glucagon-like peptide 1 on non-insulin-mediated glucose uptake in the elderly patient with diabetes. Diabetes Care 2001; 24: 1951–1956. ArticleCASPubMed Google Scholar
Song DH, Getty-Kaushik L, Tseng E, Simon J, Corkey BE, Wolfe MM . Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 2007; 133: 1796–1805. ArticleCASPubMed Google Scholar
Kim SJ, Nian C, McIntosh CH . Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem 2007; 282: 8557–8567. ArticleCASPubMed Google Scholar
Bollag RJ, Zhong Q, Ding KH, Phillips P, Zhong L, Qin F et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol 2001; 177: 35–41. ArticleCASPubMed Google Scholar
Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D et al. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 2005; 37: 759–769. ArticleCASPubMed Google Scholar
Xie D, Zhong Q, Ding KH, Cheng H, Williams S, Correa D et al. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone 2007; 40: 1352–1360. ArticleCASPubMed Google Scholar
Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 2007; 292: E543–E548. ArticleCASPubMed Google Scholar
Lynn FC, Thompson SA, Pospisilik JA, Ehses JA, Hinke SA, Pamir N et al. A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. Faseb J 2003; 17: 91–93. ArticleCASPubMed Google Scholar
Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL . Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 2009; 150: 580–591. ArticleCASPubMedPubMed Central Google Scholar
Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996; 2: 1254–1258. ArticleCASPubMed Google Scholar
Hansotia T, Baggio LL, Delmeire D, Hinke SA, Yamada Y, Tsukiyama K et al. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes 2004; 53: 1326–1335. ArticleCASPubMed Google Scholar
Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999; 96: 14843–14847. ArticleCASPubMedPubMed Central Google Scholar
Pamir N, Lynn FC, Buchan AM, Ehses J, Hinke SA, Pospisilik JA et al. Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. Am J Physiol Endocrinol Metab 2003; 284: E931–E939. ArticleCASPubMed Google Scholar
Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004; 113: 635–645. ArticleCASPubMedPubMed Central Google Scholar
Nauck M, Stockmann F, Ebert R, Creutzfeldt W . Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29: 46–52. ArticleCASPubMed Google Scholar
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W . Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 301–307. ArticleCASPubMedPubMed Central Google Scholar
Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86: 3717–3723. ArticleCASPubMed Google Scholar
Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ . Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50: 609–613. ArticleCASPubMed Google Scholar
Vilsboll T, Krarup T, Madsbad S, Holst JJ . Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 2002; 45: 1111–1119. ArticleCASPubMed Google Scholar
Minamino N, Kangawa K, Matsuo H . Neuromedin U-8 and U-25: novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem Biophys Res Commun 1985; 130: 1078–1085. ArticleCASPubMed Google Scholar
Austin C, Lo G, Nandha KA, Meleagros L, Bloom SR . Cloning and characterization of the cDNA encoding the human neuromedin U (NmU) precursor: NmU expression in the human gastrointestinal tract. J Mol Endocrinol 1995; 14: 157–169. ArticleCASPubMed Google Scholar
Austin C, Oka M, Nandha KA, Legon S, Khandan-Nia N, Lo G et al. Distribution and developmental pattern of neuromedin U expression in the rat gastrointestinal tract. J Mol Endocrinol 1994; 12: 257–263. ArticleCASPubMed Google Scholar
Augood SJ, Keast JR, Emson PC . Distribution and characterisation of neuromedin U-like immunoreactivity in rat brain and intestine and in guinea pig intestine. Regul Pept 1988; 20: 281–292. ArticleCASPubMed Google Scholar
Ballesta J, Carlei F, Bishop AE, Steel JH, Gibson SJ, Fahey M et al. Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience 1988; 25: 797–816. ArticleCASPubMed Google Scholar
Honzawa M, Sudoh T, Minamino N, Kangawa K, Matsuo H . Neuromedin U-like immunoreactivity in rat intestine: regional distribution and immunohistochemical study. Neuropeptides 1990; 15: 1–9. ArticleCASPubMed Google Scholar
Kaczmarek P, Malendowicz LK, Pruszynska-Oszmalek E, Wojciechowicz T, Szczepankiewicz D, Szkudelski T et al. Neuromedin U receptor 1 expression in the rat endocrine pancreas and evidence suggesting neuromedin U suppressive effect on insulin secretion from isolated rat pancreatic islets. Int J Mol Med 2006; 18: 951–955. CASPubMed Google Scholar
Alfa RW, Park S, Skelly KR, Poffenberger G, Jain N, Gu X et al. Suppression of insulin production and secretion by a decretin hormone. Cell Metab 2015; 21: 323–333. ArticleCASPubMedPubMed Central Google Scholar
Kaczmarek P, Malendowicz LK, Fabis M, Ziolkowska A, Pruszynska-Oszmalek E, Sassek M et al. Does somatostatin confer insulinostatic effects of neuromedin u in the rat pancreas? Pancreas 2009; 38: 208–212. ArticleCASPubMed Google Scholar
Wang TC, Bonner-Weir S, Oates PS, Chulak M, Simon B, Merlino GT et al. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest 1993; 92: 1349–1356. ArticleCASPubMedPubMed Central Google Scholar
Rooman I, Lardon J, Bouwens L . Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 2002; 51: 686–690. ArticleCASPubMed Google Scholar
Leung-Theung-Long S, Roulet E, Clerc P, Escrieut C, Marchal-Victorion S, Ritz-Laser B et al. Essential interaction of Egr-1 at an islet-specific response element for basal and gastrin-dependent glucagon gene transactivation in pancreatic alpha-cells. J Biol Chem 2005; 280: 7976–7984. ArticleCASPubMed Google Scholar
Ahren B, Pettersson M, Uvnas-Moberg K, Gutniak M, Efendic S . Effects of cholecystokinin (CCK)-8, CCK-33, and gastric inhibitory polypeptide (GIP) on basal and meal-stimulated pancreatic hormone secretion in man. Diabetes Res Clin Pract 1991; 13: 153–161. ArticleCASPubMed Google Scholar
Karlsson S, Ahren B . Effects of three different cholecystokinin receptor antagonists on basal and stimulated insulin and glucagon secretion in mice. Acta Physiol Scand 1989; 135: 271–278. ArticleCASPubMed Google Scholar
Rushakoff RJ, Goldfine ID, Carter JD, Liddle RA . Physiological concentrations of cholecystokinin stimulate amino acid-induced insulin release in humans. J Clin Endocrinol Metab 1987; 65: 395–401. ArticleCASPubMed Google Scholar
Verspohl EJ, Ammon HP . Cholecystokinin (CCK8) regulates glucagon, insulin, and somatostatin secretion from isolated rat pancreatic islets: interaction with glucose. Pflugers Arch 1987; 410: 284–287. ArticleCASPubMed Google Scholar
Rushakoff RA, Goldfine ID, Beccaria LJ, Mathur A, Brand RJ, Liddle RA . Reduced postprandial cholecystokinin (CCK) secretion in patients with noninsulin-dependent diabetes mellitus: evidence for a role for CCK in regulating postprandial hyperglycemia. J Clin Endocrinol Metab 1993; 76: 489–493. CASPubMed Google Scholar
Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE 2011; 6: e25792. ArticleCASPubMedPubMed Central Google Scholar
Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011; 5: 82–91. ArticleCASPubMed Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI . Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022–1023. ArticleCASPubMed Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480–484. ArticleCASPubMed Google Scholar
Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99–103. ArticleCASPubMed Google Scholar
Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010; 5: e9085. ArticlePubMedPubMed CentralCAS Google Scholar
Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuno MI . Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014; 5: 190. ArticlePubMedPubMed Central Google Scholar
Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J 2015; 29: 2397–2411. ArticleCASPubMed Google Scholar
Simon MC, Strassburger K, Nowotny B, Kolb H, Nowotny P, Burkart V et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care 2015; 38: 1827–1834. ArticleCASPubMed Google Scholar
Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009; 90: 1236–1243. ArticleCASPubMed Google Scholar
Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 2008; 22: 2416–2426. ArticleCASPubMed Google Scholar
Kieffer TJ, Habener JF . The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 2000; 278: E1–E14. ArticleCASPubMed Google Scholar
Elmquist JK, Elias CF, Saper CB . From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999; 22: 221–232. ArticleCASPubMed Google Scholar
Kieffer TJ, Heller RS, Habener JF . Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun 1996; 224: 522–527. ArticleCASPubMed Google Scholar
Emilsson V, Liu YL, Cawthorne MA, Morton NM, Davenport M . Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 1997; 46: 313–316. ArticleCASPubMed Google Scholar
Kulkarni RN, Wang ZL, Wang RM, Hurley JD, Smith DM, Ghatei MA et al. Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice. J Clin Invest 1997; 100: 2729–2736. ArticleCASPubMedPubMed Central Google Scholar
Cases JA, Gabriely I, Ma XH, Yang XM, Michaeli T, Fleischer N et al. Physiological increase in plasma leptin markedly inhibits insulin secretion in vivo. Diabetes 2001; 50: 348–352. ArticleCASPubMed Google Scholar
Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF . Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 1997; 46: 1087–1093. ArticleCASPubMed Google Scholar
Seufert J, Kieffer TJ, Habener JF . Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci USA 1999; 96: 674–679. ArticleCASPubMedPubMed Central Google Scholar
Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, Ricordi C et al. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 1999; 84: 670–676. CASPubMed Google Scholar
Bradley RL, Cheatham B . Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes 1999; 48: 272–278. ArticleCASPubMed Google Scholar
Kolaczynski JW, Nyce MR, Considine RV, Boden G, Nolan JJ, Henry R et al. Acute and chronic effects of insulin on leptin production in humans: Studies in vivo and in vitro. Diabetes 1996; 45: 699–701. ArticleCASPubMed Google Scholar
Zeigerer A, Rodeheffer MS, McGraw TE, Friedman JM . Insulin regulates leptin secretion from 3T3-L1 adipocytes by a PI 3 kinase independent mechanism. Exp Cell Res 2008; 314: 2249–2256. ArticleCASPubMedPubMed Central Google Scholar
Barr VA, Malide D, Zarnowski MJ, Taylor SI, Cushman SW . Insulin stimulates both leptin secretion and production by rat white adipose tissue. Endocrinology 1997; 138: 4463–4472. ArticleCASPubMed Google Scholar
Sattar AA, Sattar R . Insulin-regulated expression of adiponectin receptors in muscle and fat cells. Cell Biol Int 2012; 36: 1293–1297. ArticleCASPubMed Google Scholar
Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 2004; 279: 30817–30822. ArticleCASPubMed Google Scholar
Cong L, Chen K, Li J, Gao P, Li Q, Mi S et al. Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes. Biochem J 2007; 403: 519–525. ArticleCASPubMedPubMed Central Google Scholar
Liu BH, Wang YC, Wu SC, Mersmann HJ, Cheng WT, Ding ST . Insulin regulates the expression of adiponectin and adiponectin receptors in porcine adipocytes. Domest Anim Endocrinol 2008; 34: 352–359. ArticleCASPubMed Google Scholar
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295. ArticleCASPubMed Google Scholar
Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB . Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 2010; 285: 33623–33631. ArticleCASPubMedPubMed Central Google Scholar
Gu W, Li X, Liu C, Yang J, Ye L, Tang J et al. Globular adiponectin augments insulin secretion from pancreatic islet beta cells at high glucose concentrations. Endocrine 2006; 30: 217–221. ArticleCASPubMed Google Scholar
Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 2005; 146: 1764–1771. ArticleCASPubMed Google Scholar
Wei L, Hou X, Tatemoto K . Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul Pept 2005; 132: 27–32. ArticleCASPubMed Google Scholar
Takahashi M, Okimura Y, Iguchi G, Nishizawa H, Yamamoto M, Suda K et al. Chemerin regulates beta-cell function in mice. Sci Rep 2011; 1: 123. ArticlePubMedPubMed CentralCAS Google Scholar
Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, Hong KS, Kitazawa R et al. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett 2008; 582: 573–578. ArticleCASPubMed Google Scholar
Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 2009; 58: 2731–2740. ArticleCASPubMedPubMed Central Google Scholar
Tan BK, Adya R, Farhatullah S, Lewandowski KC, O'Hare P, Lehnert H et al. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes 2008; 57: 801–808. ArticleCASPubMed Google Scholar
Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 2006; 290: E1253–E1261. ArticleCASPubMed Google Scholar
McTernan PG, Fisher FM, Valsamakis G, Chetty R, Harte A, McTernan CL et al. Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab 2003; 88: 6098–6106. ArticleCASPubMed Google Scholar
Haider DG, Schaller G, Kapiotis S, Maier C, Luger A, Wolzt M . The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 2006; 49: 1909–1914. ArticleCASPubMed Google Scholar
Brown JE, Onyango DJ, Ramanjaneya M, Conner AC, Patel ST, Dunmore SJ et al. Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells. J Mol Endocrinol 2010; 44: 171–178. ArticleCASPubMed Google Scholar
Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 2009; 106: 10853–10858. ArticleCASPubMedPubMed Central Google Scholar
Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F . FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J 2014; 463: 191–199. ArticleCASPubMed Google Scholar
Hojman P, Pedersen M, Nielsen AR, Krogh-Madsen R, Yfanti C, Akerstrom T et al. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 2009; 58: 2797–2801. ArticleCASPubMedPubMed Central Google Scholar
Trayhurn P, Drevon CA, Eckel J . Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem 2011; 117: 47–56. ArticleCASPubMed Google Scholar
Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, Martens G et al. Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 2008; 105: 13163–13168. ArticleCASPubMedPubMed Central Google Scholar
Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 2011; 17: 1481–1489. ArticleCASPubMedPubMed Central Google Scholar
Meinert CL, Knatterud GL, Prout TE, Klimt CR . A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970; 19 (Suppl): 789–830. Google Scholar
Schwartz TB, Meinert CL . The UGDP controversy: thirty-four years of contentious ambiguity laid to rest. Perspect Biol Med 2004; 47: 564–574. ArticlePubMed Google Scholar
Babenko AP, Gonzalez G, Bryan J . The tolbutamide site of SUR1 and a mechanism for its functional coupling to K(ATP) channel closure. FEBS Lett 1999; 459: 367–376. ArticleCASPubMed Google Scholar
Koster JC, Sha Q, Nichols CG . Sulfonylurea and K(+)-channel opener sensitivity of K(ATP) channels. Functional coupling of Kir6.2 and SUR1 subunits. J Gen Physiol 1999; 114: 203–213. ArticleCASPubMedPubMed Central Google Scholar
Clement JPt 4th, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L et al. Association and stoichiometry of K(ATP) channel subunits. Neuron 1997; 18: 827–838. ArticleCASPubMed Google Scholar
Miki T, Nagashima K, Seino S . The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. J Mol Endocrinol 1999; 22: 113–123. ArticleCASPubMed Google Scholar
Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003; 52: 568–572. ArticleCASPubMed Google Scholar
Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1996; 16: 1011–1017. ArticleCASPubMed Google Scholar
Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y et al. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 1996; 271: 24321–24324. ArticleCASPubMed Google Scholar
Proks P, Reimann F, Green N, Gribble F, Ashcroft F . Sulfonylurea stimulation of insulin secretion. Diabetes 2002; 51 (Suppl 3): S368–S376. ArticleCASPubMed Google Scholar
Gros L, Virsolvy A, Salazar G, Bataille D, Blache P . Characterization of low-affinity binding sites for glibenclamide on the Kir6.2 subunit of the beta-cell KATP channel. Biochem Biophys Res Commun 1999; 257: 766–770. ArticleCASPubMed Google Scholar
Gribble FM, Tucker SJ, Ashcroft FM . The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J Physiol 1997; 504 (Pt 1): 35–45. ArticleCASPubMedPubMed Central Google Scholar
Overkamp D, Volk A, Maerker E, Heide PE, Wahl HG, Rett K et al. Acute effect of glimepiride on insulin-stimulated glucose metabolism in glucose-tolerant insulin-resistant offspring of patients with type 2 diabetes. Diabetes Care 2002; 25: 2065–2073. ArticleCASPubMed Google Scholar
Best JD, Judzewitsch RG, Pfeifer MA, Beard JC, Halter JB, Porte D Jr . The effect of chronic sulfonylurea therapy on hepatic glucose production in non-insulin-dependent diabetes. Diabetes 1982; 31 (4 Pt 1): 333–338. ArticleCASPubMed Google Scholar
Kolterman OG, Gray RS, Shapiro G, Scarlett JA, Griffin J, Olefsky JM . The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes 1984; 33: 346–354. ArticleCASPubMed Google Scholar
Markworth E, Schwanstecher C, Schwanstecher M . ATP4- mediates closure of pancreatic beta-cell ATP-sensitive potassium channels by interaction with 1 of 4 identical sites. Diabetes 2000; 49: 1413–1418. ArticleCASPubMed Google Scholar
Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM . A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care 2007; 30: 389–394. ArticlePubMed Google Scholar
van Staa T, Abenhaim L, Monette J . Rates of hypoglycemia in users of sulfonylureas. J Clin Epidemiol 1997; 50: 735–741. ArticleCASPubMed Google Scholar
Ahren B . Avoiding hypoglycemia: a key to success for glucose-lowering therapy in type 2 diabetes. Vasc Health Risk Manag 2013; 9: 155–163. ArticlePubMedPubMed Central Google Scholar
Fuhlendorff J, Rorsman P, Kofod H, Brand CL, Rolin B, MacKay P et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 1998; 47: 345–351. ArticleCASPubMed Google Scholar
Gribble FM, Tucker SJ, Seino S, Ashcroft FM . Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes 1998; 47: 1412–1418. ArticleCASPubMed Google Scholar
Hu S, Wang S, Dunning BE . Tissue selectivity of antidiabetic agent nateglinide: study on cardiovascular and beta-cell K(ATP) channels. J Pharmacol Exp Ther 1999; 291: 1372–1379. CASPubMed Google Scholar
Hu S, Wang S, Fanelli B, Bell PA, Dunning BE, Geisse S et al. Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: a comparison with sulfonylureas and repaglinide. J Pharmacol Exp Ther 2000; 293: 444–452. CASPubMed Google Scholar
Seto Y, Fujita H, Dan K, Fujita T, Kato R . Stimulating activity of A-4166 on insulin release in in situ hamster pancreatic perfusion. Pharmacology 1995; 51: 245–253. ArticleCASPubMed Google Scholar
Ikenoue T, Akiyoshi M, Fujitani S, Okazaki K, Kondo N, Maki T . Hypoglycaemic and insulinotropic effects of a novel oral antidiabetic agent, (-)-N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166). Br J Pharmacol 1997; 120: 137–145. ArticleCASPubMed Google Scholar
Melander A . Kinetics-effect relations of insulin-releasing drugs in patients with type 2 diabetes: brief overview. Diabetes 2004; 53 (Suppl 3): S151–S155. ArticleCASPubMed Google Scholar
Van Gaal LF, Van Acker KL, De Leeuw IH . Repaglinide improves blood glucose control in sulphonylurea-naive type 2 diabetes. Diabetes Res Clin Pract 2001; 53: 141–148. ArticleCASPubMed Google Scholar
Furlong NJ, Hulme SA, O'Brien SV, Hardy KJ . Repaglinide versus metformin in combination with bedtime NPH insulin in patients with type 2 diabetes established on insulin/metformin combination therapy. Diabetes Care 2002; 25: 1685–1690. ArticleCASPubMed Google Scholar
Meier JJ, Nauck MA, Kranz D, Holst JJ, Deacon CF, Gaeckler D et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 2004; 53: 654–662. ArticleCASPubMed Google Scholar
Green BD, Gault VA, O'Harte FP, Flatt PR . Structurally modified analogues of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) as future antidiabetic agents. Curr Pharm Des 2004; 10: 3651–3662. ArticleCASPubMed Google Scholar
Green BD, Lavery KS, Irwin N, O'Harte FP, Harriott P, Greer B et al. Novel glucagon-like peptide-1 (GLP-1) analog (Val8)GLP-1 results in significant improvements of glucose tolerance and pancreatic beta-cell function after 3-week daily administration in obese diabetic (ob/ob) mice. J Pharmacol Exp Ther 2006; 318: 914–921. ArticleCASPubMed Google Scholar
Green BD, Mooney MH, Gault VA, Irwin N, Bailey CJ, Harriott P et al. N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity. J Endocrinol 2004; 180: 379–388. ArticleCASPubMed Google Scholar
Irwin N, Gault VA, Green BD, Greer B, Harriott P, Bailey CJ et al. Antidiabetic potential of two novel fatty acid derivatised, N-terminally modified analogues of glucose-dependent insulinotropic polypeptide (GIP): N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37). Biol Chem 2005; 386: 679–687. ArticleCASPubMed Google Scholar
Irwin N, Green BD, Mooney MH, Greer B, Harriott P, Bailey CJ et al. A novel, long-acting agonist of glucose-dependent insulinotropic polypeptide suitable for once-daily administration in type 2 diabetes. J Pharmacol Exp Ther 2005; 314: 1187–1194. ArticleCASPubMed Google Scholar
Siegel EG, Gallwitz B, Scharf G, Mentlein R, Morys-Wortmann C, Folsch UR et al. Biological activity of GLP-1-analogues with N-terminal modifications. Regul Pept 1999; 79: 93–102. ArticleCASPubMed Google Scholar
Ratner RE, Maggs D, Nielsen LL, Stonehouse AH, Poon T, Zhang B et al. Long-term effects of exenatide therapy over 82 weeks on glycaemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab 2006; 8: 419–428. ArticleCASPubMed Google Scholar
Moretto TJ, Milton DR, Ridge TD, Macconell LA, Okerson T, Wolka AM et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2008; 30: 1448–1460. ArticleCASPubMed Google Scholar
Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005; 28: 1083–1091. ArticleCASPubMed Google Scholar
Buse JB, Drucker DJ, Taylor KL, Kim T, Walsh B, Hu H et al. DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care 2010; 33: 1255–1261. ArticleCASPubMedPubMed Central Google Scholar
Kim D, MacConell L, Zhuang D, Kothare PA, Trautmann M, Fineman M et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007; 30: 1487–1493. ArticleCASPubMed Google Scholar
Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374: 39–47. ArticleCASPubMed Google Scholar
Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009; 32: 1224–1230. ArticleCASPubMedPubMed Central Google Scholar
Fonseca VA, Alvarado-Ruiz R, Raccah D, Boka G, Miossec P, Gerich JE . Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care 2012; 35: 1225–1231. ArticleCASPubMedPubMed Central Google Scholar
Ratner RE, Rosenstock J, Boka G . Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with Type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diabet Med 2010; 27: 1024–1032. ArticleCASPubMedPubMed Central Google Scholar
Rosenstock J, Hanefeld M, Shamanna P, Min KW, Boka G, Miossec P et al. Beneficial effects of once-daily lixisenatide on overall and postprandial glycemic levels without significant excess of hypoglycemia in type 2 diabetes inadequately controlled on a sulfonylurea with or without metformin (GetGoal-S). J Diabetes Complications 2014; 28: 386–392. ArticlePubMed Google Scholar
Elahi D, McAloon-Dyke M, Fukagawa NK, Meneilly GS, Sclater AL, Minaker KL et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul Pept 1994; 51: 63–74. ArticleCASPubMed Google Scholar
Chia CW, Carlson OD, Kim W, Shin YK, Charles CP, Kim HS et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 2009; 58: 1342–1349. ArticleCASPubMedPubMed Central Google Scholar
Mentis N, Vardarli I, Kothe LD, Holst JJ, Deacon CF, Theodorakis M et al. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 2011; 60: 1270–1276. ArticleCASPubMedPubMed Central Google Scholar
Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B . Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995; 56: 117–126. ArticleCASPubMed Google Scholar
Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF . Insulinotropic action of glucagonlike peptide-I-(7-37) in diabetic and nondiabetic subjects. Diabetes Care 1992; 15: 270–276. ArticleCASPubMed Google Scholar
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 854–865.
Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000; 49: 2063–2069. ArticleCASPubMed Google Scholar
Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002; 51: 2074–2081. ArticleCASPubMed Google Scholar
Seifarth C, Schehler B, Schneider HJ . Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp Clin Endocrinol Diabetes 2013; 121: 27–31. CASPubMed Google Scholar
Lee A, Morley JE . Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 1998; 6: 47–53. ArticleCASPubMed Google Scholar
Hashemitabar M, Bahramzadeh S, Saremy S, Nejaddehbashi F . Glucose plus metformin compared with glucose alone on beta-cell function in mouse pancreatic islets. Biomed Rep 2015; 3: 721–725. ArticleCASPubMedPubMed Central Google Scholar
Richardson H, Campbell SC, Smith SA, Macfarlane WM . Effects of rosiglitazone and metformin on pancreatic beta cell gene expression. Diabetologia 2006; 49: 685–696. ArticleCASPubMed Google Scholar
Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X et al. Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy. Int J Biol Sci 2014; 10: 268–277. ArticlePubMedPubMed Central Google Scholar
Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H et al. Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem Pharmacol 2004; 68: 409–416. ArticleCASPubMed Google Scholar
Marchetti P, Del Guerra S, Marselli L, Lupi R, Masini M, Pollera M et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab 2004; 89: 5535–5541. ArticleCASPubMed Google Scholar
Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G et al. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 2002; 51 (Suppl 1): S134–S137. ArticleCASPubMed Google Scholar
Murphy EJ, Davern TJ, Shakil AO, Shick L, Masharani U, Chow H et al. Troglitazone-induced fulminant hepatic failure. Acute Liver Failure Study Group. Dig Dis Sci 2000; 45: 549–553. ArticleCASPubMed Google Scholar
Neuschwander-Tetri BA, Isley WL, Oki JC, Ramrakhiani S, Quiason SG, Phillips NJ et al. Troglitazone-induced hepatic failure leading to liver transplantation. A case report. Ann Intern Med 1998; 129: 38–41. ArticleCASPubMed Google Scholar
Kohlroser J, Mathai J, Reichheld J, Banner BF, Bonkovsky HL . Hepatotoxicity due to troglitazone: report of two cases and review of adverse events reported to the United States Food and Drug Administration. Am J Gastroenterol 2000; 95: 272–276. ArticleCASPubMed Google Scholar
Nissen SE, Wolski K . Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457–2471. ArticleCASPubMed Google Scholar
Berger J, Bailey P, Biswas C, Cullinan CA, Doebber TW, Hayes NS et al. Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 1996; 137: 4189–4195. ArticleCASPubMed Google Scholar
Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–5348. ArticleCASPubMedPubMed Central Google Scholar
Dumasia R, Eagle KA, Kline-Rogers E, May N, Cho L, Mukherjee D . Role of PPAR- gamma agonist thiazolidinediones in treatment of pre-diabetic and diabetic individuals: a cardiovascular perspective. Curr Drug Targets Cardiovasc Haematol Disord 2005; 5: 377–386. ArticleCASPubMed Google Scholar
Smith SR, De Jonge L, Volaufova J, Li Y, Xie H, Bray GA . Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metabolism 2005; 54: 24–32. ArticleCASPubMed Google Scholar
Ishida H, Takizawa M, Ozawa S, Nakamichi Y, Yamaguchi S, Katsuta H et al. Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: Possible protection of beta cells from oxidative stress. Metabolism 2004; 53: 488–494. ArticleCASPubMed Google Scholar
Diani AR, Sawada G, Wyse B, Murray FT, Khan M . Pioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes. Am J Physiol Endocrinol Metab 2004; 286: E116–E122. ArticleCASPubMed Google Scholar
Kawasaki F, Matsuda M, Kanda Y, Inoue H, Kaku K . Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice. Am J Physiol Endocrinol Metab 2005; 288: E510–E518. ArticleCASPubMed Google Scholar
Kimura T, Kaneto H, Shimoda M, Hirukawa H, Okauchi S, Kohara K et al. Protective effects of pioglitazone and/or liraglutide on pancreatic beta-cells in db/db mice: comparison of their effects between in an early and advanced stage of diabetes. Mol Cell Endocrinol 2015; 400: 78–89. ArticleCASPubMed Google Scholar
Kanda Y, Shimoda M, Hamamoto S, Tawaramoto K, Kawasaki F, Hashiramoto M et al. Molecular mechanism by which pioglitazone preserves pancreatic beta-cells in obese diabetic mice: evidence for acute and chronic actions as a PPARgamma agonist. Am J Physiol Endocrinol Metab 2010; 298: E278–E286. ArticleCASPubMed Google Scholar
Wachters-Hagedoorn RE, Priebe MG, Heimweg JA, Heiner AM, Elzinga H, Stellaard F et al. Low-dose acarbose does not delay digestion of starch but reduces its bioavailability. Diabet Med 2007; 24: 600–606. ArticleCASPubMed Google Scholar
Gerard J, Luyckx AS, Lefebvre PJ . Improvement of metabolic control in insulin dependent diabetics treated with the alpha-glucosidase inhibitor acarbose for two months. Diabetologia 1981; 21: 446–451. ArticleCASPubMed Google Scholar
Josse RG, Chiasson JL, Ryan EA, Lau DC, Ross SA, Yale JF et al. Acarbose in the treatment of elderly patients with type 2 diabetes. Diabetes Res Clin Pract 2003; 59: 37–42. ArticleCASPubMed Google Scholar
Meneilly GS, Ryan EA, Radziuk J, Lau DC, Yale JF, Morais J et al. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care 2000; 23: 1162–1167. ArticleCASPubMed Google Scholar
Baron AD, Eckel RH, Schmeiser L, Kolterman OG . The effect of short-term alpha-glucosidase inhibition on carbohydrate and lipid metabolism in type II (noninsulin-dependent) diabetics. Metabolism 1987; 36: 409–415. ArticleCASPubMed Google Scholar
Hillebrand I, Boehme K, Frank G, Fink H, Berchtold P . The effects of the alpha-glucosidase inhibitor BAY g 5421 (Acarbose) on postprandial blood glucose, serum insulin, and triglyceride levels: dose-time-response relationships in man. Res Exp Med (Berl) 1979; 175: 87–94. ArticleCAS Google Scholar
Wolever TM, Chiasson JL, Josse RG, Hunt JA, Palmason C, Rodger NW et al. Small weight loss on long-term acarbose therapy with no change in dietary pattern or nutrient intake of individuals with non-insulin-dependent diabetes. Int J Obes Relat Metab Disord 1997; 21: 756–763. ArticleCASPubMed Google Scholar
Nakhaee A, Sanjari M . Evaluation of effect of acarbose consumption on weight losing in non-diabetic overweight or obese patients in Kerman. J Res Med Sci 2013; 18: 391–394. PubMedPubMed Central Google Scholar
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M . Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003; 290: 486–494. ArticleCASPubMed Google Scholar
Goda T, Suruga K, Komori A, Kuranuki S, Mochizuki K, Makita Y et al. Effects of miglitol, an alpha-glucosidase inhibitor, on glycaemic status and histopathological changes in islets in non-obese, non-insulin-dependent diabetic Goto-Kakizaki rats. Br J Nutr 2007; 98: 702–710. ArticleCASPubMed Google Scholar
Koyama M, Wada R, Mizukami H, Sakuraba H, Odaka H, Ikeda H et al. Inhibition of progressive reduction of islet beta-cell mass in spontaneously diabetic Goto-Kakizaki rats by alpha-glucosidase inhibitor. Metabolism 2000; 49: 347–352. ArticleCASPubMed Google Scholar
Fukaya N, Mochizuki K, Tanaka Y, Kumazawa T, Jiuxin Z, Fuchigami M et al. The alpha-glucosidase inhibitor miglitol delays the development of diabetes and dysfunctional insulin secretion in pancreatic beta-cells in OLETF rats. Eur J Pharmacol 2009; 624: 51–57. ArticleCASPubMed Google Scholar
Hanefeld M, Schaper F . Acarbose: oral anti-diabetes drug with additional cardiovascular benefits. Expert Rev Cardiovasc Ther 2008; 6: 153–163. ArticlePubMed Google Scholar
Hussain MA, Daniel PB, Habener JF . Glucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic beta-cells. Diabetes 2000; 49: 1681–1690. ArticleCASPubMed Google Scholar
Greenbaum CJ, Havel PJ, Taborsky GJ Jr, Klaff LJ . Intra-islet insulin permits glucose to directly suppress pancreatic A cell function. J Clin Invest 1991; 88: 767–773. ArticleCASPubMedPubMed Central Google Scholar
Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N et al. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 2006; 3: 47–58. ArticleCASPubMed Google Scholar
Meier JJ, Kjems LL, Veldhuis JD, Lefebvre P, Butler PC . Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis. Diabetes 2006; 55: 1051–1056. ArticleCASPubMed Google Scholar
Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003; 52: 1799–1805. ArticleCASPubMed Google Scholar
de Jager J, Dekker JM, Kooy A, Kostense PJ, Nijpels G, Heine RJ et al. Endothelial dysfunction and low-grade inflammation explain much of the excess cardiovascular mortality in individuals with type 2 diabetes: the Hoorn Study. Arterioscler Thromb Vasc Biol 2006; 26: 1086–1093. ArticleCASPubMed Google Scholar
Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M . Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229–234. ArticleCASPubMed Google Scholar
Almdal T, Scharling H, Jensen JS, Vestergaard H . The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 2004; 164: 1422–1426. ArticlePubMed Google Scholar
Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR . Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003; 63: 225–232. ArticlePubMed Google Scholar
Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R . Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med 1998; 158: 998–1004. ArticleCASPubMed Google Scholar
Moriwaki Y, Yamamoto T, Shibutani Y, Aoki E, Tsutsumi Z, Takahashi S et al. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism 2003; 52: 605–608. ArticleCASPubMed Google Scholar
Wannamethee SG, Lowe GD, Rumley A, Cherry L, Whincup PH, Sattar N . Adipokines and risk of type 2 diabetes in older men. Diabetes Care 2007; 30: 1200–1205. ArticleCASPubMed Google Scholar
Milewicz A, Mikulski E, Bidzinska B . Plasma insulin, cholecystokinin, galanin, neuropeptide Y and leptin levels in obese women with and without type 2 diabetes mellitus. Int J Obes Relat Metab Disord 2000; 24 Suppl 2: S152–S153. ArticleCASPubMed Google Scholar
Katsuki A, Urakawa H, Gabazza EC, Murashima S, Nakatani K, Togashi K et al. Circulating levels of active ghrelin is associated with abdominal adiposity, hyperinsulinemia and insulin resistance in patients with type 2 diabetes mellitus. Eur J Endocrinol 2004; 151: 573–577. ArticleCASPubMed Google Scholar
Poykko SM, Kellokoski E, Horkko S, Kauma H, Kesaniemi YA, Ukkola O . Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes 2003; 52: 2546–2553. ArticlePubMed Google Scholar
Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–1350. ArticleCASPubMed Google Scholar
Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R . Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011; 54: 2506–2514. ArticleCASPubMedPubMed Central Google Scholar
Gustavsson N, Lao Y, Maximov A, Chuang JC, Kostromina E, Repa JJ et al. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci USA 2008; 105: 3992–3997. ArticleCASPubMedPubMed Central Google Scholar
Shu Y, Liu X, Yang Y, Takahashi M, Gillis KD . Phosphorylation of SNAP-25 at Ser187 mediates enhancement of exocytosis by a phorbol ester in INS-1 cells. J Neurosci 2008; 28: 21–30. ArticleCASPubMedPubMed Central Google Scholar
Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO et al. Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 2004; 279: 29534–29541. ArticleCASPubMed Google Scholar
Dixit SS, Wang T, Manzano EJ, Yoo S, Lee J, Chiang DY et al. Effects of CaMKII-mediated phosphorylation of ryanodine receptor type 2 on islet calcium handling, insulin secretion, and glucose tolerance. PLoS ONE 2013; 8: e58655. ArticleCASPubMedPubMed Central Google Scholar
Dzhura I, Chepurny OG, Leech CA, Roe MW, Dzhura E, Xu X et al. Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets 2011; 3: 121–128. ArticlePubMedPubMed Central Google Scholar
Kang L, He Z, Xu P, Fan J, Betz A, Brose N et al. Munc13-1 is required for the sustained release of insulin from pancreatic beta cells. Cell Metab 2006; 3: 463–468. ArticleCASPubMed Google Scholar
Kwan EP, Xie L, Sheu L, Nolan CJ, Prentki M, Betz A et al. Munc13-1 deficiency reduces insulin secretion and causes abnormal glucose tolerance. Diabetes 2006; 55: 1421–1429. ArticleCASPubMed Google Scholar
Yaekura K, Julyan R, Wicksteed BL, Hays LB, Alarcon C, Sommers S et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem 2003; 278: 9715–9721. ArticleCASPubMed Google Scholar
Torii S, Takeuchi T, Nagamatsu S, Izumi T . Rab27 effector granuphilin promotes the plasma membrane targeting of insulin granules via interaction with syntaxin 1a. J Biol Chem 2004; 279: 22532–22538. ArticleCASPubMed Google Scholar
Betts GJ, Desaix P, Johnson E, Korol O, Kruse D, Poe B et al. Human Anatomy and Physiology. OpenStax College: Houston, TX, USA, 2013. Google Scholar