Control of osteoblast function and regulation of bone mass (original) (raw)
Neer, R. M. et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med.344, 1434–1441 (2001). ArticleCASPubMed Google Scholar
Ehrlich, P. J. & Lanyon, L. E. Mechanical strain and bone cell function: a review. Osteoporosis Int.13, 688–700 (2002). ArticleCAS Google Scholar
Pavalko, F. M. et al. A Model for mechanotransduction in bone cells: The load-bearing mechanosomes. J. Cell. Biochem.88, 104–112 (2003). ArticleCASPubMed Google Scholar
Riggs, B. L., Khosla, S. & Melton, L. J. III Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev.23, 279–302 (2002). ArticleCASPubMed Google Scholar
Schmidt, A., Harada, S. & Rodan, G. A. in Principles of Bone Biology (eds Bilezikian, J. P., Raisz, L. G. & Rodan, G. A.) 1455–1466 (Academic, San Diego, 2002). Google Scholar
Frost, H. M. Cybernetic aspects of bone modeling and remodeling with special reference to osteoporosis and whole-bone strength. Am. J. Hum. Biol.13, 235–248 (2001). ArticleCASPubMed Google Scholar
Martin, T. J. & Rodan, G. A. in Osteoporosis (eds Marcus, R., Feldman, D. & Kelsey, J.) 361–371 (Academic, San Diego, 2002). Google Scholar
Seeman, E. et al. Reduced bone mass in daughters of women with osteoporosis. N. Engl. J. Med.320, 554–558 (1989). ArticleCASPubMed Google Scholar
Ralston, S. H. Genetic control of susceptibility to osteoporosis. J. Clin. Endocrinol. Metab.87, 2460–2466 (2002). ArticleCASPubMed Google Scholar
Mosekilde, L. Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner.10, 13–35 (1990). ArticleCASPubMed Google Scholar
Wallace, B. A. & Cumming, R. G. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif. Tissue Int.67, 10–18 (2000). ArticleCASPubMed Google Scholar
Kontulainen, S. et al. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J. Bone Miner. Res.16, 195–201 (2001). ArticleCASPubMed Google Scholar
Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell100, 197–207 (2000). ArticleCASPubMed Google Scholar
Corral, D. A. et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc. Natl Acad. Sci. USA95, 13835–13840 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell111, 305–317 (2002). ArticleCASPubMed Google Scholar
Thomas, T. et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology140, 1630–1638 (1999). ArticleCASPubMed Google Scholar
Burguera, B. et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology142, 3546–3553 (2001). ArticleCASPubMed Google Scholar
Khosla, S. Leptin-central or peripheral to the regulation of bone metabolism? Endocrinology143, 4161–4164 (2002). ArticleCASPubMed Google Scholar
Bliziotes, M. et al. Bone histomorphometric and biomechanical abnormalities in mice homozygous for deletion of the dopamine transporter gene. Bone26, 15–19 (2000). ArticleCASPubMed Google Scholar
Thorsell, A. & Heilig, M. Diverse functions of neuropeptide Y revealed using genetically modified animals. Neuropeptides36, 182–193 (2002). ArticleCASPubMed Google Scholar
Mahns, D. A., Lacroix, J. S. & Potter, E. K. Inhibition of vagal vasodilatation by a selective neuropeptide Y Y2 receptor agonist in the bronchial circulation of anaesthetised dogs. J. Auton. Nerv. Syst.73, 80–85 (1998). ArticleCASPubMed Google Scholar
Smith-White, M. A., Herzog, H. & Potter, E. K. Role of neuropeptide Y Y(2) receptors in modulation of cardiac parasympathetic neurotransmission. Regul. Pept.103, 105–111 (2002). ArticleCASPubMed Google Scholar
Minkowitz, B., Boskey, A. L., Lane, J. M., Pearlman, H. S. & Vigorita, V. J. Effects of propranolol on bone metabolism in the rat. J. Orthop. Res.9, 869–875 (1991). ArticleCASPubMed Google Scholar
Schwartzman, R. J. New treatments for reflex sympathetic dystrophy. N. Engl. J. Med.343, 654–656 (2000). ArticleCASPubMed Google Scholar
Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science289, 1501–1504 (2000). ArticleADSCASPubMed Google Scholar
Rosen, E. D. & Spiegelman, B. M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol.16, 145–171 (2000). ArticleCASPubMed Google Scholar
Arnold, H. H. & Winter, B. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev.8, 539–544 (1998). ArticleCASPubMed Google Scholar
Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell2, 389–406 (2002). ArticleCASPubMed Google Scholar
Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev.16, 2813–2828 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell89, 747–754 (1997). ArticleCASPubMed Google Scholar
Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell89, 755–764 (1997). ArticleCASPubMed Google Scholar
Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell89, 765–771 (1997). ArticleCASPubMed Google Scholar
Inada, M. et al. Maturational disturbance of chondrocytes in _Cbfa1_-deficient mice. Dev. Dyn.214, 279–290 (1999). ArticleCASPubMed Google Scholar
Ueta, C. et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J. Cell Biol.153, 87–100 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takeda, S., Bonnamy, J. P., Owen, M. J., Ducy, P. & Karsenty, G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev.15, 467–481 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell108, 17–29 (2002). ArticleCASPubMed Google Scholar
Jheon, A. H., Ganss, B., Cheifetz, S. & Sodek, J. Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J. Biol. Chem.276, 18282–18289 (2001). ArticleCASPubMed Google Scholar
Kundu, M. et al. Cbfβ interacts with Runx2 and has a critical role in bone development. Nature Genet.32, 639–644 (2002). ArticleCASPubMed Google Scholar
Yoshida, C. A. et al. Core-binding factor β interacts with Runx2 and is required for skeletal development. Nature Genet.32, 633–638 (2002). ArticleCASPubMed Google Scholar
Bendall, A. J. & Abate-Shen, C. Roles for Msx and Dlx homeoproteins in vertebrate development. Gene247, 17–31 (2000). ArticleCASPubMed Google Scholar
Robledo, R. F., Rajan, L., Li, X. & Lufkin, T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev.16, 1089–1101 (2002). ArticleCASPubMedPubMed Central Google Scholar
Grigoriadis, A. E., Wang, Z. Q. & Wagner, E. F. Fos and bone cell development: lessons from a nuclear oncogene. Trends Genet.11, 436–441 (1995). ArticleCASPubMed Google Scholar
Jochum, W. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Med.6, 980–984 (2000). ArticleCASPubMed Google Scholar
Sabatakos, G. et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Med.6, 985–990 (2000). ArticleCASPubMed Google Scholar
Ducy, P. et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev.13, 1025–1036 (1999). ArticleCASPubMedPubMed Central Google Scholar
Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A. & Matthias, P. High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage. Mol. Cell. Biol.22, 6222–6233 (2002). ArticleCASPubMedPubMed Central Google Scholar
Liu, W. et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J. Cell Biol.155, 157–166 (2001). ArticleCASPubMedPubMed Central Google Scholar
Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70, 11–19 (2002). ArticleCASPubMed Google Scholar
Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346, 1513–1521 (2002). ArticleCASPubMed Google Scholar
Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107, 513–523 (2001). ArticleCASPubMed Google Scholar
Kato, M. et al. _Cbfa1_-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol.157, 303–314 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hey, P. J. et al. Cloning of a novel member of the low-density lipoprotein receptor family. Gene216, 103–111 (1998). ArticleCASPubMed Google Scholar
Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature407, 535–538 (2000). ArticleADSCASPubMed Google Scholar
Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell7, 801–809 (2001). ArticleCASPubMed Google Scholar
Bain, G., Muller, T., Wang, X. & Papkoff, J. Activated β-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem. Biophys. Res. Commun.301, 84–91 (2003). ArticleCASPubMed Google Scholar
Hadjiargyrou, M. et al. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J. Biol. Chem.277, 30177–30182 (2002). ArticleCASPubMed Google Scholar
Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet.72, 763–771 (2003). ArticleCASPubMedPubMed Central Google Scholar
Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet.10, 537–543 (2001). ArticleCASPubMed Google Scholar
Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet.68, 577–589 (2001). ArticleCASPubMedPubMed Central Google Scholar
Balemans, W. & Van Hul, W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev. Biol.250, 231–250 (2002). ArticleCASPubMed Google Scholar
Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature417, 664–667 (2002). ArticleADSCASPubMed Google Scholar