Mechanisms of gene silencing by double-stranded RNA (original) (raw)
References
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). ArticleADSCASPubMed Google Scholar
Tijsterman, M., Ketting, R. F. & Plasterk, R. H. The genetics of RNA silencing. Annu. Rev. Genet.36, 489–519 (2002). CASPubMed Google Scholar
Ullu, E., Tschudi, C. & Chakraborty, T. RNA interference in protozoan parasites. Cell Microbiol.6, 509–519 (2004). CASPubMed Google Scholar
Waterhouse, P. M., Wang, M. B. & Lough, T. Gene silencing as an adaptive defence against viruses. Nature411, 834–842 (2001). ADSCASPubMed Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). CASPubMed Google Scholar
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J.21, 4663–4670 (2002). CASPubMedPubMed Central Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ADSCASPubMed Google Scholar
Basyuk, E., Suavet, F., Doglio, A., Bordonne, R. & Bertrand, E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res.31, 6593–6597 (2003). CASPubMedPubMed Central Google Scholar
Bohnsack, M. T., Czaplinski, K. & Görlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10, 185–191 (2004). CASPubMedPubMed Central Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). ADSCASPubMed Google Scholar
Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). CASPubMedPubMed Central Google Scholar
Hutvágner, G., McLachlan, J., Bálint, É., Tuschl, T. & Zamore, P. D. A cellular function for the RNA interference enzyme Dicer in small temporal RNA maturation. Science93, 834–838 (2001). Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). CASPubMed Google Scholar
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81 (2004). CASPubMed Google Scholar
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, E104 (2004). PubMedPubMed Central Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). ArticleADSCASPubMed Google Scholar
Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev.15, 188–200 (2001). CASPubMedPubMed Central Google Scholar
Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science301, 1921–1925 (2003). ADSCASPubMed Google Scholar
Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W. & Sontheimer, E. J. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell117, 83–94 (2004). CASPubMed Google Scholar
Nykänen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321 (2001). PubMed Google Scholar
Provost, P. et al. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J.21, 5864–5874 (2002). CASPubMedPubMed Central Google Scholar
Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J.21, 5875–5885 (2002). CASPubMedPubMed Central Google Scholar
Boutet, S. et al. Arabidopsis HEN1: A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr. Biol.13, 843–848 (2003). CASPubMedPubMed Central Google Scholar
Vazquez, F., Gasciolli, V., Crete, P. & Vaucheret, H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not post-transcriptional transgene silencing. Curr. Biol.14, 346–351 (2004). CASPubMed Google Scholar
Han, M. H., Goud, S., Song, L. & Fedoroff, N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl Acad. Sci. USA101, 1093–1098 (2004). ADSCASPubMedPubMed Central Google Scholar
Tabara, H., Yigit, E., Siomi, H. & Mello, C. C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell109, 861–871 (2002). CASPubMed Google Scholar
Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000). ADSCASPubMed Google Scholar
Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.16, 720–728 (2002). CASPubMedPubMed Central Google Scholar
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science293, 1146–1150 (2001). CASPubMed Google Scholar
Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell110, 563–574 (2002). CASPubMed Google Scholar
Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060 (2002). ADSPubMed Google Scholar
Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev.18, 975–980 (2004). CASPubMedPubMed Central Google Scholar
Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep.5, 189–194 (2004). CASPubMedPubMed Central Google Scholar
Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell116, 831–841 (2004). CASPubMed Google Scholar
Cook, H. A., Koppetsch, B. S., Wu, J. & Theurkauf, W. E. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell116, 817–829 (2004). CASPubMed Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). CASPubMed Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). CASPubMed Google Scholar
Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem-cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742 (2002). CASPubMed Google Scholar
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science; published online 29 July 2004 (doi:10.1126/science.1102514).
Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004). ADSCASPubMedPubMed Central Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Struct. Mol. Biol.11, 576–577 (2004). CAS Google Scholar
Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J.20, 6877–6888 (2001). CASPubMedPubMed Central Google Scholar
Hunter, C., Sun, H. & Poethig, R. S. The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr. Biol.13, 1734–1739 (2003). CASPubMed Google Scholar
Williams, R. W. & Rubin, G. M. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl Acad. Sci. USA99, 6889–6894 (2002). ADSCASPubMedPubMed Central Google Scholar
Sasaki, T., Shiohama, A., Minoshima, S. & Shimizu, N. Identification of eight members of the Argonaute family in the human genome. Genomics82, 323–330 (2003). CASPubMed Google Scholar
Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev.18, 1655–1666 (2004). CASPubMedPubMed Central Google Scholar
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197 (2004). CASPubMed Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science published online 29 July 2004 (doi: 10.1126/science.1102513).
Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.16, 2491–2496 (2002). CASPubMedPubMed Central Google Scholar
Caudy, A. A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature425, 411–414 (2003). ADSCASPubMed Google Scholar
Ishizuka, A., Siomi, M. C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev.16, 2497–2508 (2002). CASPubMedPubMed Central Google Scholar
Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci.7, 113–117 (2004). CASPubMed Google Scholar
Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol.14, 787–791 (2004). CASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). CASPubMed Google Scholar
Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol.243, 215–225 (2002). CASPubMed Google Scholar
Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. USA101, 360–365 (2004). ADSCASPubMed Google Scholar
Saxena, S., Jonsson, Z. O. & Dutta, A. Small RNAs with imperfect match to endogenous mRNA repress translation: implications for off-target activity of siRNA in mammalian cells. J. Biol. Chem.278, 44312–44319 (2003). CASPubMed Google Scholar
Wassenegger, M. & Pelissier, T. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol.37, 349–362 (1998). CASPubMed Google Scholar
Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell107, 465–476 (2001). CASPubMed Google Scholar
Schwarz, D. S., Hutvágner, G., Haley, B. & Zamore, P. D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell10, 537–548 (2002). CASPubMed Google Scholar
Roignant, J. Y. et al. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA9, 299–308 (2003). CASPubMedPubMed Central Google Scholar
Stein, P., Svoboda, P., Anger, M. & Schultz, R. M. RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA9, 187–192 (2003). CASPubMedPubMed Central Google Scholar
Waterhouse, P. M., Wang, M. & Finnegan, E. J. Role of short RNAs in gene silencing. Trends Plant Sci.6, 297–301 (2001). CASPubMed Google Scholar
Gitlin, L. & Andino, R. Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J. Virol.77, 7159–7165 (2003). CASPubMedPubMed Central Google Scholar
Li, W. X. & Ding, S. W. Viral suppressors of RNA silencing. Curr. Opin. Biotechnol.12, 150–154 (2001). CASPubMed Google Scholar
Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet.17, 449–459 (2001). CASPubMed Google Scholar
Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science296, 1319–1321 (2002). ADSCASPubMed Google Scholar
Vargason, J. M., Szittya, G., Burgyan, J. & Hall, T. M. Size selective recognition of siRNA by an RNA silencing suppressor. Cell115, 799–811 (2003). CASPubMed Google Scholar
Ye, K., Malinina, L. & Patel, D. J. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature426, 874–878 (2003). ADSCASPubMedPubMed Central Google Scholar
Knight, S. W. & Bass, B. L. The role of RNA editing by ADARs in RNAi. Mol. Cell10, 809–817 (2002). CASPubMed Google Scholar
Tonkin, L. A. & Bass, B. L. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science302, 1725 (2003). CASPubMedPubMed Central Google Scholar
Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature427, 645–649 (2004). ADSCASPubMed Google Scholar
Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol.12, 1317–1319 (2002). CASPubMed Google Scholar
Calin, G. A. et al. Frequent deletions and down-regulation of microRNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002). ADSCASPubMedPubMed Central Google Scholar
Michael, M. Z., O' Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1, 882–891 (2003). CASPubMed Google Scholar
Moroy, T. et al. Structure and expression of hcr, a locus rearranged with c-myc in a woodchuck hepatocellular carcinoma. Oncogene4, 59–65 (1989). CASPubMed Google Scholar
Gauwerky, C. E., Huebner, K., Isobe, M., Nowell, P. C. & Croce, C. M. Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc. Natl Acad. Sci. USA86, 8867–8871 (1989). ADSCASPubMedPubMed Central Google Scholar
Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science304, 734–736 (2004). ADSCASPubMed Google Scholar
Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J.17, 170–180 (1998). CASPubMedPubMed Central Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). ADSCASPubMed Google Scholar
Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi-related mechanism affects both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell9, 315–327 (2002). CASPubMed Google Scholar
Kennerdell, J. R., Yamaguchi, S. & Carthew, R. W. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev.16, 1884–1889 (2002). CASPubMedPubMed Central Google Scholar
Tijsterman, M., Okihara, K. L., Thijssen, K. & Plasterk, R. H. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr. Biol.12, 1535–1540 (2002). CASPubMed Google Scholar
Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA97, 11650–11654 (2000). ADSCASPubMedPubMed Central Google Scholar
Dalmay, T., Horsefield, R., Braunstein, T. H. & Baulcombe, D. C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J.20, 2069–2078 (2001). CASPubMedPubMed Central Google Scholar
Tijsterman, M., Ketting, R. F., Okihara, K. L. & Plasterk, R. H. RNA helicase MUT-14-dependent silencing triggered in C. elegans by short antisense RNAs. Science295, 694–697 (2002). ADSCASPubMed Google Scholar
Domeier, M. E. et al. A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science289, 1928–1931 (2000). ADSCASPubMed Google Scholar
Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell101, 533–542 (2000). CASPubMed Google Scholar
Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science303, 1336 (2004). CASPubMed Google Scholar
Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol.10, 169–178 (2000). CASPubMed Google Scholar
Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature399, 166–169 (1999). ADSCASPubMed Google Scholar
Glazov, E. et al. A gene encoding an RNase D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis. Plant J.35, 342–349 (2003). CASPubMed Google Scholar
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell99, 133–141 (1999). CASPubMed Google Scholar
Winston, W. M., Molodowitch, C. & Hunter, C. P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science295, 2456–2459 (2002). ADSCASPubMed Google Scholar
Cogoni, C. & Macino, G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science286, 2342–2344 (1999). CASPubMed Google Scholar
Kidner, C. A. & Martienssen, R. A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature428, 81–84 (2004). ADSCASPubMed Google Scholar