Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking (original) (raw)
De Camilli, P., Emr, S. D., McPherson, P. S. & Novick, P. Phosphoinositides as regulators in membrane traffic. Science271, 1533–1539 (1996) ArticleADSCAS Google Scholar
Hilgemann, D. W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE2001, RE19 (2001) CAS Google Scholar
Martin, T. F. PI(4,5)P(2) regulation of surface membrane traffic. Curr. Opin. Cell Biol.13, 493–499 (2001) ArticleCAS Google Scholar
Czech, M. P. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol.65, 791–815 (2003) ArticleCAS Google Scholar
Valtorta, F. & Meldolesi, J. The presynaptic compartment: signals and targets. Semin. Cell Biol.5, 211–219 (1994) ArticleCAS Google Scholar
Wang, S. S. & Augustine, G. J. Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron15, 755–760 (1995) ArticleCAS Google Scholar
Wiedemann, C., Schafer, T., Burger, M. M. & Sihra, T. S. An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J. Neurosci.18, 5594–5602 (1998) ArticleCAS Google Scholar
Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell99, 179–188 (1999) ArticleCAS Google Scholar
Lackner, M. R., Nurrish, S. J. & Kaplan, J. M. Facilitation of synaptic transmission by EGL-30 Gqα and EGL-8 PLCβ: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron24, 335–346 (1999) ArticleCAS Google Scholar
Gad, H. et al. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron27, 301–312 (2000) ArticleCAS Google Scholar
Harris, T. W., Hartwieg, E., Horvitz, H. R. & Jorgensen, E. M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol.150, 589–600 (2000) ArticleCAS Google Scholar
Rhee, J. S. et al. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell108, 121–133 (2002) ArticleCAS Google Scholar
Micheva, K. D., Buchanan, J., Holz, R. W. & Smith, S. J. Retrograde regulation of synaptic vesicle endocytosis and recycling. Nature Neurosci.6, 925–932 (2003) ArticleCAS Google Scholar
Murthy, V. N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci.26, 701–728 (2003) ArticleCAS Google Scholar
Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol.57, 315–344 (1973) ArticleCAS Google Scholar
Takei, K., Mundigl, O., Daniell, L. & De Camilli, P. The synaptic vesicle cycle: A single vesicle budding step involving clathrin and dynamin. J. Cell Biol.133, 1237–1250 (1996) ArticleCAS Google Scholar
Fesce, R. & Meldolesi, J. Peeping at the vesicle kiss. Nature Cell Biol.1, E3–E4 (1999) ArticleCAS Google Scholar
Aravanis, A. M., Pyle, J. L. & Tsien, R. W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature423, 643–647 (2003) ArticleADSCAS Google Scholar
Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature423, 607–613 (2003) ArticleADSCAS Google Scholar
McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature379, 353–357 (1996) ArticleADSCAS Google Scholar
Kim, W. T. et al. Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc. Natl Acad. Sci. USA99, 17143–17148 (2002) ArticleADSCAS Google Scholar
Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron40, 733–748 (2003) ArticleCAS Google Scholar
Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell94, 131–141 (1998) ArticleCAS Google Scholar
Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature419, 361–366 (2002) ArticleADSCAS Google Scholar
Evans, P. R. & Owen, D. J. Endocytosis and vesicle trafficking. Curr. Opin. Struct. Biol.12, 814–821 (2002) ArticleCAS Google Scholar
Hay, J. C. et al. ATP-dependent inositide phosphorylation required for Ca(2 + )-activated secretion. Nature374, 173–177 (1995) ArticleADSCAS Google Scholar
Holz, R. W. et al. A pleckstrin homology domain specific for phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5–P2 as being important in exocytosis. J. Biol. Chem.275, 17878–17885 (2000) ArticleCAS Google Scholar
Khvotchev, M. & Sudhof, T. C. Newly synthesized phosphatidylinositol phosphates are required for synaptic norepinephrine but not glutamate or γ-aminobutyric acid (GABA) release. J. Biol. Chem.273, 21451–21454 (1998) ArticleCAS Google Scholar
Doughman, R. L., Firestone, A. J. & Anderson, R. A. Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J. Membr. Biol.194, 77–89 (2003) ArticleCAS Google Scholar
Wenk, M. R. et al. PIP kinase Iγ is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron32, 79–88 (2001) ArticleCAS Google Scholar
Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin. Nature420, 85–89 (2002) ArticleADSCAS Google Scholar
Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature420, 89–93 (2002) ArticleADSCAS Google Scholar
Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol.162, 113–124 (2003) ArticleCAS Google Scholar
Aikawa, Y. & Martin, T. F. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5) bisphosphate required for regulated exocytosis. J. Cell Biol.162, 647–659 (2003) ArticleCAS Google Scholar
Wenk, M. R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nature Biotechnol.21, 813–817 (2003) ArticleCAS Google Scholar
Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell99, 521–532 (1999) ArticleCAS Google Scholar
Audigier, S. M., Wang, J. K. & Greengard, P. Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals. Proc. Natl Acad. Sci. USA85, 2859–2863 (1988) ArticleADSCAS Google Scholar
Luthi, A. et al. Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. J. Neurosci.21, 9101–9111 (2001) ArticleCAS Google Scholar
Stevens, C. F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl Acad. Sci. USA92, 846–849 (1995) ArticleADSCAS Google Scholar
Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron16, 1197–1207 (1996) ArticleCAS Google Scholar
Kashani, A. H., Chen, B. M. & Grinnell, A. D. Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins. J. Physiol. (Lond.)530, 243–252 (2001) ArticleCAS Google Scholar
Ryan, T. A. Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J. Neurosci.19, 1317–1323 (1999) ArticleCAS Google Scholar
Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998) ArticleADSCAS Google Scholar
Sankaranarayanan, S. & Ryan, T. A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nature Cell Biol.2, 197–204 (2000) ArticleCAS Google Scholar
Sankaranarayanan, S. & Ryan, T. A. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nature Neurosci.4, 129–136 (2001) ArticleCAS Google Scholar
Bai, J., Tucker, W. C. & Chapman, E. R. PIP(2) increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nature Struct. Mol. Biol.11, 36–44 (2004) ArticleCAS Google Scholar
Neeb, A., Koch, H., Schurmann, A. & Brose, N. Direct interaction between the ARF-specific guanine nucleotide exchange factor msec7–1 and presynaptic Munc13–1. Eur. J. Cell Biol.78, 533–538 (1999) ArticleCAS Google Scholar
Fitzsimonds, R. M., Song, H. J. & Poo, M. M. Propagation of activity-dependent synaptic depression in simple neural networks. Nature388, 439–448 (1997) ArticleADSCAS Google Scholar