Tong, G. & Jahr, C.E. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron12, 51–59 (1994). ArticleCASPubMed Google Scholar
Choi, S., Klingauf, J. & Tsien, R.W. Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat. Neurosci.3, 330–336 (2000). ArticleCASPubMed Google Scholar
Renger, J.J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron29, 469–484 (2001). ArticleCASPubMed Google Scholar
Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R. & Sudhof, T.C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature345, 260–263 (1990). ArticleCASPubMed Google Scholar
Brose, N., Petrenko, A.G., Sudhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science256, 1021–1025 (1992). ArticleCASPubMed Google Scholar
Chapman, E.R. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol.3, 498–508 (2002). ArticleCASPubMed Google Scholar
Littleton, J.T. et al. synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci.21, 1421–1433 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature410, 41–49 (2001). ArticleCASPubMed Google Scholar
Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M. & Reist, N.E. The C(2)B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature418, 340–344 (2002). ArticleCASPubMed Google Scholar
Robinson, I.M., Ranjan, R. & Schwarz, T.L. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C(2)A domain. Nature418, 336–340 (2002). ArticleCASPubMed Google Scholar
Fernandez-Chacon, R. et al. Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J. Neurosci.22, 8438–8446 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yoshihara, M. & Littleton, J.T. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron36, 897–908 (2002). ArticleCASPubMed Google Scholar
Wang, C.T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science294, 1111–1115 (2001). ArticleCASPubMed Google Scholar
Schiavo, G., Gu, Q.M., Prestwich, G.D., Sollner, T.H. & Rothman, J.E. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc. Natl. Acad. Sci. USA93, 13327–13332 (1996). ArticleCASPubMedPubMed Central Google Scholar
Holz, R.W. et al. A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J. Biol. Chem.275, 17878–17885 (2000). ArticleCASPubMed Google Scholar
Micheva, K.D., Holz, R.W. & Smith, S.J. Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J. Cell Biol.154, 355–368 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci.114, 1041–1052 (2001). CASPubMed Google Scholar
Eberhard, D.A., Cooper, C.L., Low, M.G. & Holz, R.W. Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem. J.268, 15–25 (1990). ArticleCASPubMedPubMed Central Google Scholar
Hay, J.C. & Martin, T.F. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature366, 572–575 (1993). ArticleCASPubMed Google Scholar
Hay, J.C. et al. ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature374, 173–177 (1995). ArticleCASPubMed Google Scholar
Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry37, 12395–12403 (1998). ArticleCASPubMed Google Scholar
McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct.31, 151–175 (2002). ArticleCASPubMed Google Scholar
Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron24, 363–376 (1999). ArticleCASPubMed Google Scholar
Bai, J., Wang, P. & Chapman, E.R. C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc. Natl. Acad. Sci. USA99, 1665–1670 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bai, J., Earles, C.A., Lewis, J.L. & Chapman, E.R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J. Biol. Chem.275, 25427–25435 (2000). ArticleCASPubMed Google Scholar
Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain. Synaptotagmin 1 as a phospholipid binding machine. Neuron32, 1057–1069 (2001). ArticleCASPubMed Google Scholar
Wu, Y. et al. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proc. Natl. Acad. Sci. USA100, 2082–2087 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fukuda, M., Kojima, T., Aruga, J., Niinobe, M. & Mikoshiba, K. Functional diversity of C2 domains of synaptotagmin family. Mutational analysis of inositol high polyphosphate binding domain. J. Biol. Chem.270, 26523–26527 (1995). ArticleCASPubMed Google Scholar
Mackler, J.M. & Reist, N.E. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions. J. Comp. Neurol.436, 4–16 (2001). ArticleCASPubMed Google Scholar
Desai, R.C. et al. The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol.150, 1125–1136 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tucker, W.C. et al. Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells. J. Cell Biol.162, 199–209 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fukuda, M. et al. Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad. Sci. USA92, 10708–10712 (1995). ArticleCASPubMedPubMed Central Google Scholar
Bommert, K. et al. Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature363, 163–165 (1993). ArticleCASPubMed Google Scholar
Loyet, K.M. et al. Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J. Biol. Chem.273, 8337–8343 (1998). ArticleCASPubMed Google Scholar
Chung, S.H. et al. The C2 domains of Rabphilin3A specifically bind phosphatidylinositol 4,5-bisphosphate containing vesicles in a Ca2+-dependent manner. In vitro characteristics and possible significance. J. Biol. Chem.273, 10240–10248 (1998). ArticleCASPubMed Google Scholar
Burns, M.E., Sasaki, T., Takai, Y. & Augustine, G.J. Rabphilin-3A: a multifunctional regulator of synaptic vesicle traffic. J. Gen. Physiol.111, 243–255 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schluter, O.M. et al. Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. J. Neurosci.19, 5834–5846 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chapman, E.R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem.269, 5735–5741 (1994). CASPubMed Google Scholar
Wang, P., Wang, C.T., Bai, J., Jackson, M.B. & Chapman, E.R. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a non-additive manner. J. Biol. Chem. (2003).
Mahal, L.K., Sequeira, S.M., Gureasko, J.M. & Sollner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol.158, 273–282 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell97, 165–174 (1999). ArticleCASPubMed Google Scholar
Earles, C.A., Bai, J., Wang, P. & Chapman, E.R. The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol.154, 1117–1123 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A. & Martin, T.F. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron34, 599–611 (2002). ArticleCASPubMed Google Scholar
Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem.273, 13995–14001 (1998). ArticleCASPubMed Google Scholar
Wiedemann, C., Schafer, T., Burger, M.M. & Sihra, T.S. An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J. Neurosci.18, 5594–5602 (1998). ArticleCASPubMedPubMed Central Google Scholar
Khvotchev, M. & Sudhof, T.C. Newly synthesized phosphatidylinositol phosphates are required for synaptic norepinephrine but not glutamate or γ-aminobutyric acid (GABA) release. J. Biol. Chem.273, 21451–21454 (1998). ArticleCASPubMed Google Scholar
Elferink, L.A., Trimble, W.S. & Scheller, R.H. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J. Biol. Chem.264, 11061–11064 (1989). CASPubMed Google Scholar
Chapman, E.R., Hanson, P.I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem.270, 23667–23671 (1995). ArticleCASPubMed Google Scholar
Ubach, J. et al. The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry40, 5854–5860 (2001). ArticleCASPubMed Google Scholar
Shao, X., Fernandez, I., Sudhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry37, 16106–16115 (1998). ArticleCASPubMed Google Scholar