Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex (original) (raw)
References
Mello, C. C. & Conte, D. Jr Revealing the world of RNA interference. Nature431, 338–342 (2004) ArticleADSCAS Google Scholar
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature431, 343–349 (2004) ArticleADSCAS Google Scholar
Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742 (2002) ArticleCAS Google Scholar
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science293, 1146–1150 (2001) ArticleCAS Google Scholar
Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science303, 672–676 (2004) ArticleADSCAS Google Scholar
Sontheimer, E. J. Assembly and function of RNA silencing complexes. Nature Rev. Mol. Cell Biol.6, 127–138 (2005) ArticleCAS Google Scholar
Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474 (2003) ArticleADS Google Scholar
Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct. Biol.10, 1026–1032 (2003) ArticleCAS Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Struct. Mol. Biol.11, 576–577 (2004) ArticleCAS Google Scholar
Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004) ArticleADSCAS Google Scholar
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004) ArticleADSCAS Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4737 (2004) ArticleCAS Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004) ArticleADSCAS Google Scholar
Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321 (2001) ArticleCAS Google Scholar
Chiu, Y. L. & Rana, T. M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell10, 549–561 (2002) ArticleCAS Google Scholar
Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell110, 563–574 (2002) ArticleCAS Google Scholar
Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J.20, 6877–6888 (2001) ArticleCAS Google Scholar
Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev.15, 188–200 (2001) ArticleCAS Google Scholar
Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol.11, 599–606 (2004) ArticleCAS Google Scholar
Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060 (2002) ArticleADSCAS Google Scholar
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003) ArticleCAS Google Scholar
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila MicroRNA targets. PLoS Biol.1, 397–409 (2003) ArticleCAS Google Scholar
Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev.18, 504–511 (2004) ArticleCAS Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell120, 15–20 (2005) ArticleCAS Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003) ArticleCAS Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003) ArticleCAS Google Scholar
Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev.18, 1655–1666 (2004) ArticleCAS Google Scholar
Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. Science306, 1377–1380 (2004) ArticleADSCAS Google Scholar
Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Ma, J.-B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature doi:10.1038/nature03514 (this issue)