Deininger, M., Buchdunger, E. & Druker, B. J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood1, 2640–2653 (2005). Article Google Scholar
Emens, L. A. Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am. J. Ther.12, 243–253 (2005). PubMed Google Scholar
Weinstein, I. Addiction to oncogenes: the Achilles Heel of Cancer. Science297, 63–65 (2002). ArticleCASPubMed Google Scholar
Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science278, 1064–1068 (1997). ArticleADSCASPubMed Google Scholar
Kaelin, W. J. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer5, 689–698 (2005). ArticleCAS Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleADSCASPubMed Google Scholar
Mills, G. P., Lu, Y. & Kohn, E. C. Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc. Natl Acad. Sci. USA98, 10031–10033 (2001). ArticleADSCASPubMedPubMed Central Google Scholar
O'Neill, J., Manion, M., Schwartz, P. & Hockenbery, D. M. Promises and challenges of targeting Bcl-2 anti-apoptotic proteins for cancer therapy. Biochim. Biophys. Acta1705, 43–51 (2004). CASPubMed Google Scholar
Jensen, E. V. & Jordan, V. C. The estrogen receptor: a model for molecular medicine. Clin. Cancer Res.9, 1980–1989 (2003). CASPubMed Google Scholar
Jenster, G. The role of the androgen receptor in the development and progression of prostate cancer. Semin. Oncol.26, 407–421 (1999). CASPubMed Google Scholar
Pitha-Rowe, I., Petty, W. J., Kitareewan, S. & Dmitrovsky, E. Retinoid target genes in acute promyelocytic leukemia. Leukemia17, 1723–1730 (2003). ArticleCASPubMed Google Scholar
Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436, 117–122 (2005). ArticleADSCASPubMed Google Scholar
Marx, J. Encouraging results for second generation anti-angiogenic drugs. Science308, 1248–1249 (2005). ArticleCASPubMed Google Scholar
van Elsas, A. et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am. J. Pathol.149, 883–893 (1996). CASPubMedPubMed Central Google Scholar
Walker, F. & Olson, M. F. Targeting Ras and Rho GTPases as opportunities for cancer therapies. Curr. Opin. Genet. Dev.15, 62–68 (2005). ArticleCASPubMed Google Scholar
Beeram, M., Patnaik, A. & Rowinsky, E. K. Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol.23, 6771–6790 (2005). ArticleCASPubMed Google Scholar
Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet.33, 19–20 (2003). ArticleCASPubMed Google Scholar
Thompson, N. & Lyons, J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr. Opin. Pharmacol.5, 350–356 (2005). ArticleCASPubMed Google Scholar
Janne, P. A., Engelman, J. A. & Johnson, B. E. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J. Clin. Oncol.23, 3227–3234 (2005). ArticleCASPubMed Google Scholar
Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–500 (2004). ArticleADSCASPubMed Google Scholar
Rao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA101, 13306–13311 (2004). ArticleADS Google Scholar
Tsao, M. S. et al. Erlotinib in lung cancer: molecular and clinical predictors of outcome. N. Engl. J. Med.353, 133–134 (2005). ArticleCASPubMed Google Scholar
Patel, J. D., Pasche, B. & Argiris, A. Targeting non-small cell lung cancer with epidermal growth factor tyrosine kinase inhibitors: where do we stand, where do we go. Crit. Rev. Oncol. Hematol.50, 175–186 (2004). ArticlePubMed Google Scholar
Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005). ArticleCASPubMed Google Scholar
Engelman, J. A. et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA102, 3788–3793 (2005). ArticleADSCASPubMedPubMed Central Google Scholar
Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell29, 161–169 (1982). ArticleCASPubMed Google Scholar
Silva, J., Chang, K., Hannon, G. J. & Rivas, F. V. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene23, 8401–8409 (2004). ArticleCASPubMed Google Scholar
Torrance, C. J., Agrawal, V., Vogelstein, B. & Kinzler, K. W. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnol.19, 940–945 (2001). ArticleCAS Google Scholar
Kohli, M., Rago, C., Lengauer, C., Kinzler, K. W. & Vogelstein, B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res.32, e3 (2004). ArticlePubMedPubMed Central Google Scholar
Mazurier, F., Doedens, M., Gan, O. I. & Dick, J. E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD–SCID mice reveals a new class of human stem cells. Nature Med.9, 959–963 (2003). ArticleCASPubMed Google Scholar
Brumby, A. M. & Richardson, H. E. Using Drosophila melanogaster to map human cancer pathways. Nature Rev. Cancer5, 626–639 (2005). ArticleCAS Google Scholar
Amatruda, J. D., Shepard, J. L., Stern, H. M. & Zon, L. I. Zebrafish as a cancer model system. Cancer Cell1, 229–231 (2002). ArticleCASPubMed Google Scholar
Simon, J. A. Yeast as a model system for anticancer drug discovery. Expert Opin. Ther. Targets5, 177–195 (2001). CASPubMed Google Scholar
Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell76, 665–676 (1994). ArticleCASPubMed Google Scholar
Kamb, A. What's wrong with our cancer models? Nature Rev. Drug Discov.4, 161–165 (2005). ArticleCAS Google Scholar
Sausville, E. A. Target selection issues in drug discovery and development. J. Chemother. Suppl.16 (suppl. 4), 16–18 (2004). ArticleCAS Google Scholar
Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science304, 554 (2004). ArticleCASPubMed Google Scholar
Bachman, K. E. et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther.3, 772–775 (2004). ArticleCASPubMed Google Scholar
Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell7, 561–573 (2005). ArticleCASPubMed Google Scholar
Aoki, M., Jiang, H. & Vogt, P. K. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl Acad. Sci. USA101, 13613–13617 (2004). ArticleADSCASPubMedPubMed Central Google Scholar
Lengauer, C., Diaz, L. A. & Saha, S. Cancer drug discovery through collaboration. Nature Rev. Drug Discov.4, 375–380 (2005). ArticleCAS Google Scholar
Salloukh, H. F., Vowles, I., Heisterkamp, N., Groffen, J. & Laneuville, P. Early events in leukemogenesis in P190Bcr–abl transgenic mice. Oncogene19, 4362–4374 (2000). ArticleCASPubMed Google Scholar
Lefevre, G. et al. Roles of stem cell factor/c-Kit and effects of Glivec/STI571 in human uveal melanoma cell tumorigenesis. J. Biol. Chem.279, 31769–31779 (2004). ArticleCASPubMed Google Scholar
Mitsiades, C. S., Mitsiades, N. & Koutsilieris, M. The Akt pathway: molecular targets for anti-cancer drug development. Curr. Cancer Drug Targets4, 235–256 (2004). ArticleCASPubMed Google Scholar
Kitayama, H. et al. Neoplastic transformation of normal hematopoietic cells by constitutively activating mutations of c-kit receptor tyrosine kinase. Blood88, 995–1004 (1996). CASPubMed Google Scholar
Cool, M., Depault, F. & Jolicoeur, P. Fine allelotyping of Erbb2-induced mammary tumors in mice reveals multiple discontinuous candidate regions of tumor-suppressor loci. Genes Chromosomes Cancer45, 191–202 (2006). ArticleCASPubMed Google Scholar
Kang, C. S. et al. An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J. Neurooncol.73, 267–273 (2005). Article Google Scholar
Kim, H. & Muller, W. J. The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res.253, 78–87 (1999). ArticleCASPubMed Google Scholar
Park, D. J., Vuong, P. T., de Vos, S., Douer, D. & Koeffler, H. P. Comparative analysis of genes regulated by PML/RARα and PLZF/RARα in response to retinoic acid using oligonucleotide arrays. Blood102, 3727–3736 (2003). ArticleCASPubMed Google Scholar
Lewis, J. S. et al. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J. Natl Cancer Inst.97, 1746–1759 (2005). ArticleCASPubMed Google Scholar
Lu, M., Mira- y-Lopez, R., Nakajo, S., Nakaya, K. & Jing, Y. Expression of estrogen receptor α, retinoic acid receptor α and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene24, 4362–4269 (2005). ArticleCASPubMed Google Scholar
Yue, W. et al. Tamoxifen versus aromatase inhibitors for breast cancer prevention. Clin. Cancer Res.11, 9225s–9230s (2005). Google Scholar
Nair, H. B. et al. Induction of aromatase expression in cervical carcinomas: effects of endogenous estrogen on cervical cancer cell proliferation. Cancer Res.65, 11164–11173 (2005). ArticleCASPubMed Google Scholar
Ratliff, T. L. Mutation of the androgen receptor causes oncogenic transformation of the prostate. J. Urol.174, 1149 (2005). PubMed Google Scholar
Tao, J. et al. Inhibiting the growth of malignant melanoma by blocking the expression of vascular endothelial growth factor using an RNA interference approach. Br. J. Dermatol.153, 715–724 (2005). ArticleCASPubMed Google Scholar