Reddy, A. & Kaelin, W. G. Jr. Using cancer genetics to guide the selection of anticancer drug targets. Curr. Opin. Pharmacol.2, 366–373 (2002). ArticleCASPubMed Google Scholar
Kaelin, W. G. Jr. Gleevec: prototype or outlier? Sci. STKE 2004, PE12 (2004). References 1–3 provide counter-arguments to naysayers who suggest that genetically complex cancers will never be successfully treated with drugs.
Hartman, J. T., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science291, 1001–1004 (2001). ArticleCASPubMed Google Scholar
Guarente, L. Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet.9, 362–366 (1993). ArticleCASPubMed Google Scholar
Kamb, A. Mutation load, functional overlap, and synthetic lethality in the evolution and treatment of cancer. J. Theor. Biol.223, 205–213 (2003). This paper and reference 58 are thoughtful essays on maladaptive genetic changes in cancer cells that might render them vunerable to pharmacological attack. ArticleCASPubMed Google Scholar
Friend, S. & Oliff, A. Emerging uses for genomic information in drug discovery. N. Engl. J. Med.338, 125–126 (1998). ArticleCASPubMed Google Scholar
Dobzhansky, T. Genetics of natural populations. XIII. Recombination and variability in populations of Drosophila pseudoobscura. Genetics31, 269–290 (1946). ArticleCASPubMedPubMed Central Google Scholar
Lucchesi, J. C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogaster. Genetics59, 37–44 (1968). ArticleCASPubMedPubMed Central Google Scholar
Sharom, J. R., Bellows, D. S. & Tyers, M. From large networks to small molecules. Curr. Opin. Chem. Biol.8, 81–90 (2004). Excellent introduction to systems biology as applied to cancer and cancer pharmacology. ArticleCASPubMed Google Scholar
Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics143, 95–102 (1996). ArticleCASPubMedPubMed Central Google Scholar
Li, J. J. & Herskowitz, I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science262, 1870–1874 (1993). ArticleCASPubMed Google Scholar
Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science294, 2364–2368 (2001). ArticleCASPubMed Google Scholar
Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science303, 808–813 (2004). References 14 and 15 provide a glimpse into the complexity of synthetic lethal networks in yeast. ArticleCASPubMed Google Scholar
Hartwell, L., Szankasi, P., Roberts, C., Murray, A. & Friend, S. Integrating genetic approaches into the discovery of anticancer drugs. Science278, 1064–1068 (1997). This seminal paper argues that synthetic lethal interactions be exploited to arrive at safer, more efficacious cancer drugs. ArticleCASPubMed Google Scholar
Sellers, W. R. & Kaelin, W. G. Jr. Role of the retinoblastoma protein in the pathogenesis of human cancer. J. Clin. Oncol.15, 3301–3312 (1997). ArticleCASPubMed Google Scholar
Nip, J. et al. E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol. Cell. Biol.17, 1049–1056 (1997). ArticleCASPubMedPubMed Central Google Scholar
Almasan, A. et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc. Natl Acad. Sci. USA92, 5436–5440 (1995). ArticleCASPubMedPubMed Central Google Scholar
Banerjee, D. et al. Role of E2F-1 in chemosensitivity. Cancer Res.58, 4292–4296 (1998). CASPubMed Google Scholar
Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell3, 285–296 (2003). ArticleCASPubMed Google Scholar
Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature411, 342–348 (2001). ArticleCASPubMed Google Scholar
Zaika, A., Irwin, M., Sansome, C. & Moll, U. M. Oncogenes induce and activate endogenous p73 protein. J. Biol. Chem.276, 11310–11316 (2001). ArticleCASPubMed Google Scholar
Meng, R., Phillips, P. & El-Deiry, W. p53-independent increase in E2F-1 expression enhances the cytoxic effects of etoposide and of adriamycin. Intl J. Oncol.14, 5–14 (1999). CAS Google Scholar
Rutherford, S. L. & Lindquist, S. HSP90 as a capacitor for morphological evolution. Nature396, 336–342 (1998). ArticleCASPubMed Google Scholar
Isaacs, J. S., Xu, W. & Neckers, L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell3, 213–217 (2003). ArticleCASPubMed Google Scholar
Workman, P. Altered states: selectively drugging the HSP90 cancer chaperone. Trends Mol. Med.10, 47–51 (2004). ArticleCASPubMed Google Scholar
Neckers, L. & Neckers, K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics – an update. Expert Opin. Emerg. Drugs10, 137–149 (2005). ArticleCASPubMed Google Scholar
Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature426, 895–899 (2003). ArticleCASPubMed Google Scholar
Rajkumar, S. V., Richardson, P. G., Hideshima, T. & Anderson, K. C. Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol.23, 630–639 (2005). ArticleCASPubMed Google Scholar
Krek, W., Xu, G., & Livingston, D. M. Cyclin A-kinase regulation of E2F1 DNA binding function underlies suppression of an S phase checkpoint. Cell83, 1149–1158 (1995). ArticleCASPubMed Google Scholar
Dynlacht, B. D., Flores, O., Lees, J. A. & Harlow, E. Differential regulation of E2F transactivation by cyclin/CDK complexes. Genes Dev.8, 1772–1786 (1994). ArticleCASPubMed Google Scholar
Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell78, 161–172 (1994). ArticleCASPubMed Google Scholar
Xu, M., Sheppard, K. A., Peng, C-Y., Yee, A. S. & Piwnica-Worms, H. Cyclin A/CDK2 binds directly to E2F1 and inhibits the DNA-binding activity of E2F1/DP1 by phosphorylation. Mol. Cell. Biol.14, 8420–8431 (1994). CASPubMedPubMed Central Google Scholar
Parr, M. J. et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nature Med.3, 1145–1149 (1997). ArticleCASPubMed Google Scholar
Chen, Y. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA96, 4325–4329 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chen, W., Lee, J., Cho, S. Y. & Fine, H. A. Proteasome-mediated destruction of the cyclin A/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in vivo. Cancer Res.64, 3949–3957 (2004). ArticleCASPubMed Google Scholar
Mendoza, N. et al. Selective cyclin-dependent kinase 2/cyclin A antagonists that differ from ATP site inhibitors block tumor growth. Cancer Res.63, 1020–1024 (2003). CASPubMed Google Scholar
Tetsu, O. & McCormick, F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell3, 233–245 (2003). ArticleCASPubMed Google Scholar
Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. CDK2 knockout mice are viable. Curr. Biol.13, 1775–1785 (2003). ArticleCASPubMed Google Scholar
Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet.35, 25–31 (2003). ArticleCASPubMed Google Scholar
Schlegel, R. & Pardee, A. B. Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science232, 1264–1266 (1986). ArticleCASPubMed Google Scholar
Nishimoto, T., Ishida, R., Ajiro, K., Yamamoto, S. & Takahashi, T. The synthesis of protein(s) for chromosome condensation may be regulated by a post-transcriptional mechanism. J. Cell. Physiol.109, 299–308 (1981). ArticleCASPubMed Google Scholar
Hall-Jackson, C. A., Cross, D. A., Morrice, N. & Smythe, C. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene18, 6707–6713 (1999). ArticleCASPubMed Google Scholar
Sarkaria, J. N. et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res.59, 4375–4382 (1999). CASPubMed Google Scholar
Nghiem, P., Park, P., Kim, Y., Vaziri, C. & Schreiber, S. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl Acad. Sci. USA98, 9092–9097 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sordella, R., Bell, D. W., Haber, D. A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science305, 1163–1167 (2004). ArticleCASPubMed Google Scholar
Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004). ArticleCASPubMed Google Scholar
Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). ArticleCASPubMed Google Scholar
Pao, W. et al. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA101, 13306–13311 (2004). ArticleCASPubMedPubMed Central Google Scholar
Weinstein, I. B. et al. Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin. Cancer Res.3, 2696–2702 (1997). CASPubMed Google Scholar
Weinstein, I. B. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis21, 857–864 (2000). ArticleCASPubMed Google Scholar
Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science297, 63–64 (2002). References 52–54, introduced the term 'oncogene addiction'. ArticleCASPubMed Google Scholar
Adams, P. & Kaelin, W. J. Jr. The cellular effects of E2F overexpression. Curr. Top. Microbiol. Immunol.208, 79–93 (1996). CASPubMed Google Scholar
Sherr, C. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res.60, 3689–3695 (2000). CASPubMed Google Scholar
Mills, G., Lu, Y. & Kohn, E. Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc. Natl Acad. Sci. USA98, 10031–10033 (2001). ArticleCASPubMedPubMed Central Google Scholar
Neshat, M. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA98, 10314–10319 (2001). ArticleCASPubMedPubMed Central Google Scholar
Frei, E. D. Gene deletion: a new target for cancer chemotherapy. Lancet342, 662–664 (1993). ArticlePubMed Google Scholar
Cairns, P. et al. Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genet.11, 210–212 (1995). ArticleCASPubMed Google Scholar
Li, W. et al. Status of methylthioadenosine phosphorylase and its impact on cellular response to L-alanosine and methylmercaptopurine riboside in human soft tissue sarcoma cells. Oncol. Res.14, 373–379 (2004). ArticleCASPubMed Google Scholar
Simon, J. A. et al. Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res.60, 328–333 (2000). CASPubMed Google Scholar
Stockwell, B., Haggarty, S. & Schreiber, S. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol.6, 71–83 (1999). References 64 and 65 are two early examples of using isogenic cell lines to isolate compounds that kill cells in a genotype-specific manner. ArticleCASPubMed Google Scholar
Torrance, C., Agrawal, V., Vogelstein, B. & Kinzler, K. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnol.19, 940–945 (2001). ArticleCAS Google Scholar
Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol.11, 1295–1305 (1991). CASPubMedPubMed Central Google Scholar
Simons, A., Dafni, N., Dotan, I., Oron, Y. & Canaani, D. Establishment of a chemical synthetic lethality screen in cultured human cells. Genome Res.11, 266–273 (2001). ArticleCASPubMedPubMed Central Google Scholar
Simons, A., Dafni, N., Dotan, I., Oron, Y. & Canaani, D. Genetic synthetic lethality screen at the single gene level in cultured human cells. Nucleic Acids Res.29, E100 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fantin, V. R. & Leder, P. F16, a mitochondriotoxic compound, triggers apoptosis or necrosis depending on the genetic background of the target carcinoma cell. Cancer Res.64, 329–336 (2004). ArticleCASPubMed Google Scholar
Fantin, V. R., Berardi, M. J., Scorrano, L., Korsmeyer, S. J. & Leder, P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell2, 29–42 (2002). ArticleCASPubMed Google Scholar
Wang, Y. et al. Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell5, 501–512 (2004). ArticleCASPubMed Google Scholar
Haggarty, S. J., Clemons, P. A. & Schreiber, S. L. Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations. J. Am. Chem. Soc.125, 10543–10545 (2003). ArticleCASPubMed Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.46, 3–26 (2001). ArticleCASPubMed Google Scholar
Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods44, 235–249 (2000). ArticleCASPubMed Google Scholar
Knockaert, M. et al. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem. Biol.7, 411–422 (2000). ArticleCASPubMed Google Scholar
Hultsch, T., Albers, M. W., Schreiber, S. L. & Hohman, R. J. Immunophilin ligands demonstrate common features of signal transduction leading to exocytosis or transcription. Proc. Natl Acad. Sci. USA88, 6229–6233 (1991). ArticleCASPubMedPubMed Central Google Scholar
Baetz, K. et al. Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Proc. Natl Acad. Sci. USA101, 4525–4230 (2004). ArticleCASPubMedPubMed Central Google Scholar
Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nature Genet.21, 278–283 (1999). ArticleCASPubMed Google Scholar
Marton, M. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med.4, 1293–1301 (1998). ArticleCASPubMed Google Scholar
Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to RB and its binding protein RBAp48. Cell95, 981–991 (1998). ArticleCASPubMed Google Scholar
Fay, D. S., Large, E., Han, M. & Darland, M. lin-35/Rb and ubc-18, an E2 ubiquitin-conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development130, 3319–3330 (2003). ArticleCASPubMed Google Scholar
Fay, D. S., Keenan, S. & Han, M. fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev.16, 503–517 (2002). ArticleCASPubMedPubMed Central Google Scholar
Edgar, K. A. et al. Synthetic lethality of retinoblastoma mutant cells in the Drosophila eye by mutation of a novel peptidyl prolyl isomerase gene. Genetics170, 161–171 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature421, 231–237 (2003). ArticleCASPubMed Google Scholar
Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature421, 268–272 (2003). ArticleCASPubMed Google Scholar
Cherry, S. et al. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev.19, 445–452 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res.14, 2162–2168 (2004). ArticleCASPubMedPubMed Central Google Scholar
Willingham, A. T., Deveraux, Q. L., Hampton, G. M. & Aza-Blanc, P. RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene23, 8392–8400 (2004). ArticleCASPubMed Google Scholar
Elbashir, S. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleCASPubMed Google Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell2, 243–247 (2002). ArticleCASPubMed Google Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCASPubMed Google Scholar
Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol.20, 500–505 (2002). ArticleCAS Google Scholar
Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev.16, 948–958 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA99, 5515–5520 (2002). ArticleCASPubMedPubMed Central Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCASPubMed Google Scholar
Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature428, 427–431 (2004). References 97 and 98 suggest that it should eventually be possible to carry out synthetic lethal screens in isogenic human cell-line pairs using bar-coded shRNA libraries. ArticleCASPubMed Google Scholar
Shirane, D. et al. Enzymatic production of RNAi libraries from cDNAs. Nature Genet.36, 190–196 (2004). ArticleCASPubMed Google Scholar
Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell12, 627–637 (2003). ArticleCASPubMed Google Scholar
Gorre, M. et al. Clinical resistance to STI-571 cancer therapy caused by BCR_–_ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Shah, N. P. et al. L. Multiple BCR–ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell2, 117–125 (2002). ArticleCASPubMed Google Scholar
Jonkers, J. & Berns, A. Oncogene addiction: sometimes a temporary slavery. Cancer Cell6, 535–538 (2004). CASPubMed Google Scholar
Bailey, S. N., Sabatini, D. M. & Stockwell, B. R. Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc. Natl Acad. Sci. USA101, 16144–16149 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wheeler, D. B. et al. RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells. Nature Methods1, 127–132 (2004). ArticleCASPubMed Google Scholar
Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nature Genet.35, 277–286 (2003). Describes the use of DNA bar codes coupled with oligonucleotide microarrays to conduct synthetic lethal assays in yeast. ArticleCASPubMed Google Scholar
Shoemaker, D. D., Lashkari, D. A., Morris, D., Mittmann, M. & Davis, R. W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genet.14, 450–456 (1996). ArticleCASPubMed Google Scholar
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285, 901–906 (1999). ArticleCASPubMed Google Scholar
Eason, R. G. et al. Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains. Proc. Natl Acad. Sci. USA101, 11046–11051 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science269, 400–403 (1995). ArticleCASPubMed Google Scholar