Central nervous system control of food intake and body weight (original) (raw)
Sims, E. A. et al. Endocrine and metabolic effects of experimental obesity in man. Recent Prog. Horm. Res.29, 457–496 (1973) CASPubMed Google Scholar
Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med.332, 621–628 (1995) ArticleCAS Google Scholar
Kennedy, G. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B140, 578–592 (1953) ArticleADSCAS Google Scholar
Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature404, 661–671 (2000) ArticleCAS Google Scholar
Garofalo, R. S. Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol. Metab.13, 156–162 (2002) ArticleCAS Google Scholar
Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science277, 942–946 (1997) ArticleCAS Google Scholar
Doyon, C., Drouin, G., Trudeau, V. L. & Moon, T. W. Molecular evolution of leptin. Gen. Comp. Endocrinol.124, 188–198 (2001) ArticleCAS Google Scholar
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature372, 425–432 (1994) ArticleADSCAS Google Scholar
Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med.341, 879–884 (1999) ArticleCAS Google Scholar
Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. J. Am. Med. Assoc.282, 1568–1575 (1999) ArticleCAS Google Scholar
De Souza, C. T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology146, 4192–4199 (2005) ArticleCAS Google Scholar
Munzberg, H., Flier, J. S. & Bjorbaek, C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology145, 4880–4889 (2004) Article Google Scholar
Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science289, 2122–2125 (2000) ArticleADSCAS Google Scholar
Cohen, P. et al. Selective deletion of leptin receptor in neurons leads to obesity. J. Clin. Invest.108, 1113–1121 (2001) ArticleCAS Google Scholar
Batterham, R. L. et al. Gut hormone PYY3–36 physiologically inhibits food intake. Nature418, 650–654 (2002) ArticleADSCAS Google Scholar
Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes50, 1714–1719 (2001) ArticleCAS Google Scholar
Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature407, 908–913 (2000) ArticleADSCAS Google Scholar
Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature409, 194–198 (2001) ArticleADSCAS Google Scholar
Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab.86, 5992 (2001) ArticleCAS Google Scholar
Cummings, D. E. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med.346, 1623–1630 (2002) Article Google Scholar
Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature410, 822–825 (2001) ArticleADSCAS Google Scholar
Leibowitz, S. F. & Alexander, J. T. Hypothalamic serotonin in control of eating behaviour, meal size, and body weight. Biol. Psychiatry44, 851–864 (1998) ArticleCAS Google Scholar
Leibowitz, S. F., Roossin, P. & Rosenn, M. Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat. Pharmacol. Biochem. Behav.21, 801–808 (1984) ArticleCAS Google Scholar
Obici, S. et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes51, 271–275 (2002) ArticleCAS Google Scholar
Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science288, 2379–2381 (2000) ArticleADSCAS Google Scholar
He, W., Lam, T. K., Obici, S. & Rossetti, L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nature Neurosci.9, 227–233 (2006) ArticleCAS Google Scholar
Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature428, 569–574 (2004) ArticleADSCAS Google Scholar
Andersson, U. et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem.279, 12005–12008 (2004) ArticleCAS Google Scholar
Cota, D. et al. Hypothalamic mTOR regulates food intake. Science312, 927–930 (2006) ArticleADSCAS Google Scholar
Strubbe, J. H. & Woods, S. C. The timing of meals. Psychol. Rev.111, 128–141 (2004) Article Google Scholar
Gibbs, J., Young, R. C. & Smith, G. P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol.84, 488–495 (1973) ArticleCAS Google Scholar
Emond, M., Schwartz, G. J., Ladenheim, E. E. & Moran, T. H. Central leptin modulates behavioural and neural responsivity to CCK. Am. J. Physiol.276, R1545–R1549 (1999) CASPubMed Google Scholar
Morton, G. J. et al. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J. Clin. Invest.115, 703–710 (2005) ArticleCAS Google Scholar
Grill, H. J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology143, 239–246 (2002) ArticleCAS Google Scholar
Elmquist, J. K., Bjorbaek, C., Ahima, R. S., Flier, J. S. & Saper, C. B. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol.395, 535–547 (1998) ArticleCAS Google Scholar
Blevins, J. E., Schwartz, M. W. & Baskin, D. G. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brainstem nuclei controlling meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol.287, R87–R96 (2004) ArticleCAS Google Scholar
Kelley, A. E., Baldo, B. A., Pratt, W. E. & Will, M. J. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav.86, 773–795 (2005) ArticleCAS Google Scholar
Rolls, E. T. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol. Behav.85, 45–56 (2005) ArticleCAS Google Scholar
Kringelbach, M. L., O'Doherty, J., Rolls, E. T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex13, 1064–1071 (2003) ArticleCAS Google Scholar
Kelley, A. E. & Berridge, K. C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci.22, 3306–3311 (2002) ArticleCAS Google Scholar
Stuber, G. D., Evans, S. B., Higgins, M. S., Pu, Y. & Figlewicz, D. P. Food restriction modulates amphetamine-conditioned place preference and nucleus accumbens dopamine release in the rat. Synapse46, 83–90 (2002) ArticleCAS Google Scholar
Carroll, M. E., France, C. P. & Meisch, R. A. Food deprivation increases oral and intravenous drug intake in rats. Science205, 319–321 (1979) ArticleADSCAS Google Scholar
Fulton, S., Woodside, B. & Shizgal, P. Modulation of brain reward circuitry by leptin. Science287, 125–128 (2000) ArticleADSCAS Google Scholar
Figlewicz, D. P. et al. Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav. Neurosci.118, 479–487 (2004) ArticleCAS Google Scholar
Figlewicz, D. P. Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am. J. Physiol. Regul. Integr. Comp. Physiol.284, R882–R892 (2003) ArticleCAS Google Scholar
Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell116, 337–350 (2004) ArticleCAS Google Scholar
Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron49, 191–203 (2006) ArticleCAS Google Scholar
Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature385, 165–168 (1997) ArticleADSCAS Google Scholar
Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature411, 480–484 (2001) ArticleADSCAS Google Scholar
Thornton, J. E., Cheung, C. C., Clifton, D. K. & Steiner, R. A. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology138, 5063–5066 (1997) ArticleCAS Google Scholar
Shutter, J. R. et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev.11, 593–602 (1997) ArticleCAS Google Scholar
Yaswen, L., Diehl, N., Brennan, M. B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med.5, 1066–1070 (1999) ArticleCAS Google Scholar
Seeley, R. J. et al. Melanocortin receptors in leptin effects. Nature390, 349 (1997) ArticleADSCAS Google Scholar
Erickson, J., Clegg, K. & Palmiter, R. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature381, 415–418 (1996) ArticleADSCAS Google Scholar
Qian, S. et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol. Cell. Biol.22, 5027–5035 (2002) ArticleCAS Google Scholar
Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science310, 683–685 (2005) ArticleADSCAS Google Scholar
Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nature Neurosci.8, 1289–1291 (2005) ArticleCAS Google Scholar
Bewick, G. A. et al. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J.19, 1680–1682 (2005) ArticleCAS Google Scholar
Xu, A. W. et al. Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol.3, e415 (2005) Article Google Scholar
Lambert, P. D. et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl Acad. Sci. USA98, 4652–4657 (2001) ArticleADSCAS Google Scholar
Kokoeva, M. V., Yin, H. & Flier, J. S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science310, 679–683 (2005) ArticleADSCAS Google Scholar
Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nature Rev. Mol. Cell Biol.7, 85–96 (2006) ArticleCAS Google Scholar
Bjorbaek, C., Uotani, S., da Silva, B. & Flier, J. S. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem.272, 32686–32695 (1997) ArticleCAS Google Scholar
Xu, A. W. et al. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J. Clin. Invest.115, 951–958 (2005) ArticleCAS Google Scholar
Niswender, K. D. et al. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature413, 794–795 (2001) ArticleADSCAS Google Scholar
Niswender, K. D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes52, 227–231 (2003) ArticleCAS Google Scholar
Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Med.12, 534–540 (2006) ArticleCAS Google Scholar
Spanswick, D., Smith, M. A., Mirshamsi, S., Routh, V. H. & Ashford, M. L. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nature Neurosci.3, 757–758 (2000) ArticleCAS Google Scholar
Choudhury, A. I. et al. The role of insulin receptor substrate 2 in hypothalamic and β cell function. J. Clin. Invest.115, 940–950 (2005) ArticleCAS Google Scholar
van den Top, M., Lee, K., Whyment, A. D., Blanks, A. M. & Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nature Neurosci.7, 493–494 (2004) ArticleCAS Google Scholar
Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C. & Sheng, M. Control of dendritic arborization by the phosphoinositide-3′-kinase–Akt–mammalian target of rapamycin pathway. J. Neurosci.25, 11300–11312 (2005) ArticleCAS Google Scholar
Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron42, 983–991 (2004) ArticleCAS Google Scholar
Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science304, 110–115 (2004) ArticleADSCAS Google Scholar
Sternson, S. M., Shepherd, G. M. & Friedman, J. M. Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nature Neurosci.8, 1356–1363 (2005) ArticleCAS Google Scholar
Berthoud, H. R. Mind versus metabolism in the control of food intake and energy balance. Physiol. Behav.81, 781–793 (2004) ArticleCAS Google Scholar