Prions and their partners in crime (original) (raw)
Silveira, J. R., Caughey, B. & Baron, G. S. Prion protein and the molecular features of transmissible spongiform encephalopathy agents. Curr. Top. Microbiol. Immunol.284, 1–50 (2004). CASPubMed Google Scholar
Hill, A. F., Antoniou, M. & Collinge, J. Protease-resistant prion protein produced in vitro lacks detectable infectivity. J. Gen. Virol.80, 11–14 (1999). CASPubMed Google Scholar
Legname, G. et al. Strain-specified characteristics of mouse synthetic prions. Proc. Natl Acad. Sci. USA102, 2168–2173 (2005). ADSCASPubMedPubMed Central Google Scholar
Hsiao, K. K. et al. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc. Natl Acad. Sci. USA91, 9126–9130 (1994). ADSCASPubMedPubMed Central Google Scholar
Nazor, K. E. et al. Immunodetection of disease-associated mutant PrP, which accelerates disease in GSS transgenic mice. EMBO J.24, 2472–2480 (2005). CASPubMedPubMed Central Google Scholar
Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell121, 195–206 (2005). CASPubMed Google Scholar
Deleault, N. R. et al. Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J. Biol. Chem.280, 26873–26879 (2005). CASPubMed Google Scholar
Wong, C. et al. Sulfated glycans and elevated temperature stimulate PrPSc dependent cell-free formation of protease-resistant prion protein. EMBO J.20, 377–386 (2001). CASPubMedPubMed Central Google Scholar
Horonchik, L. et al. Heparan sulfate is a cellular receptor for purified infectious prions. J. Biol. Chem.280, 17062–17067 (2005). CASPubMed Google Scholar
Hijazi, N., Kariv-Inbal, Z., Gasset, M. & Gabizon, R. PrPSc incorporation to cells requires endogenous glycosaminoglycan expression. J. Biol. Chem.280, 17057–17061 (2005). CASPubMed Google Scholar
Kovalchuk, O. et al. Cellular heparan sulfate participates in the metabolism of prions. J. Biol. Chem.278, 40041–40049 (2003). Google Scholar
Shaked, G. M., Meiner, Z., Avraham, I., Taraboulos, A. & Gabizon, R. Reconstitution of prion infectivity from solubilized protease-resistant PrP and nonprotein components of prion rods. J. Biol. Chem.276, 14324–14328 (2001). CASPubMed Google Scholar
Cordeiro, Y. & Silva, J. L. The hypothesis of the catalytic action of nucleic acid on the conversion of prion protein. Protein Pept. Lett.12, 251–255 (2005). CASPubMed Google Scholar
Leucht, C. et al. The 37 kDa/67 kDa laminin receptor is required for PrPSc propagation in scrapie-infected neuronal cells. EMBO Rep.4, 290–295 (2003). CASPubMedPubMed Central Google Scholar
Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003). CASPubMed Google Scholar
Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science308, 1435–1439 (2005). ADSCASPubMed Google Scholar
Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature379, 339–343 (1996). ADSCASPubMed Google Scholar
Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science302, 871–874 (2003). ADSCASPubMed Google Scholar
Kristiansen, M. et al. Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis. J. Biol. Chem.280, 38851–38861 (2005). CASPubMed Google Scholar
Hetz, C. et al. The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J. Neurosci.25, 2793–2802 (2005). CASPubMedPubMed Central Google Scholar
Raeber, A. J. et al. Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J.16, 6057–6065 (1997). CASPubMedPubMed Central Google Scholar
Jeffrey, M., Goodsir, C. M., Race, R. E. & Chesebro, B. Scrapie-specific neuronal lesions are independent of neuronal PrP expression. Ann. Neurol.55, 781–792 (2004). CASPubMed Google Scholar
Marella, M. et al. Pathological prion protein exposure switches on neuronal mitogen-activated protein kinase pathway resulting in microglia recruitment. J. Biol. Chem.280, 1529–1534 (2005). CASPubMed Google Scholar
Harris, D. A. & True, H. L. New insights into prion structure and toxicity. Neuron50, 353–357 (2006). CASPubMed Google Scholar
Hetz, C., Maundrell, K. & Soto, C. Is loss of function of the prion protein the cause of prion disorders? Trends Mol. Med.9, 237–243 (2003). CASPubMed Google Scholar
Mallucci, G. & Collinge, J. Rational targeting for prion therapeutics. Nature Rev. Neurosci.6, 23–34 (2005). CAS Google Scholar
Chiesa, R. & Harris, D. A. Prion diseases: what is the neurotoxic molecule? Neurobiol. Dis.8, 743–763 (2001). CASPubMed Google Scholar
Roucou, X. & LeBlanc, A. C. Cellular prion protein neuroprotective function: implications in prion diseases. J. Mol. Med.83, 3–11 (2005). CASPubMed Google Scholar
Martins, V. R. et al. Cellular prion protein: on the road for functions. FEBS Lett.512, 25–28 (2002). ADSCASPubMed Google Scholar
Watt, N. T. & Hooper, N. M. The prion protein and neuronal zinc homeostasis. Trends Biochem. Sci.28, 406–410 (2003). CASPubMed Google Scholar
Vassallo, N. & Herms, J. Cellular prion protein function in copper homeostasis and redox signalling at the synapse. J. Neurochem.86, 538–544 (2003). CASPubMed Google Scholar
Santuccione, A., Sytnyk, V., Leshchyns'ka, I. & Schachner, M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol.169, 341–354 (2005). CASPubMedPubMed Central Google Scholar
Lopes, M. H. et al. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci.25, 11330–11339 (2005). CASPubMedPubMed Central Google Scholar
Moya, K. L., Hassig, R., Breen, K. C., Volland, H. & Di, G. L. Axonal transport of the cellular prion protein is increased during axon regeneration. J. Neurochem.92, 1044–1053 (2005). CASPubMed Google Scholar
Kanaani, J., Prusiner, S. B., Diacovo, J., Baekkeskov, S. & Legname, G. Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J. Neurochem.95, 1373–1386 (2005). CASPubMed Google Scholar
Tobler, I. et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature380, 639–642 (1996). ADSCASPubMed Google Scholar
Collinge, J. et al. Prion protein is necessary for normal synaptic function. Nature370, 295–297 (1994). ADSCASPubMed Google Scholar
Criado, J. R. et al. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol. Dis.19, 255–265 (2005). CASPubMed Google Scholar
Brown, D. R. et al. The cellular prion protein binds copper in vivo. Nature390, 684–687 (1997). ADSCASPubMed Google Scholar
Shyu, W. C. et al. Overexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J. Neurosci.25, 8967–8977 (2005). CASPubMedPubMed Central Google Scholar
de Almeida, C. J. et al. The cellular prion protein modulates phagocytosis and inflammatory response. J. Leukoc. Biol.77, 238–246 (2005). CASPubMed Google Scholar
Zhang, C. C., Steele, A. D., Lindquist, S. & Lodish, H. F. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl Acad. Sci. USA103, 2184–2189 (2006). ADSCASPubMedPubMed Central Google Scholar
Steele, A. D., Emsley, J. G., Ozdinler, P. H., Lindquist, S. & Macklis, J. D. Prion protein (PrPC) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc. Natl Acad. Sci. USA103, 3416–3421 (2006). ADSCASPubMedPubMed Central Google Scholar
Nico, P. B. et al. Altered behavioural response to acute stress in mice lacking cellular prion protein. Behav. Brain Res.162, 173–181 (2005). CASPubMed Google Scholar
Lledo, P. M., Tremblay, P., DeArmond, S. J., Prusiner, S. B. & Nicoll, R. A. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl Acad. Sci. USA93, 2403–2407 (1996). ADSCASPubMedPubMed Central Google Scholar
Waggoner, D. J. et al. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J. Biol. Chem.275, 7455–7458 (2000). CASPubMed Google Scholar
Brown, D. R., Schmidt, B. & Kretzschmar, H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature380, 345–347 (1996). ADSCASPubMed Google Scholar
Kunz, B., Sandmeier, E. & Christen, P. Neurotoxicity of prion peptide 106-126 not confirmed. FEBS Lett.458, 65–68 (1999). CASPubMed Google Scholar
Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science298, 1781–1785 (2002). ADSCASPubMed Google Scholar
Drisaldi, B. et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem.278, 21732–21743 (2003). CASPubMed Google Scholar
Watarai, M. et al. Cellular prion protein promotes Brucella infection into macrophages. J. Exp. Med.198, 5–17 (2003). CASPubMedPubMed Central Google Scholar
Fontes, P. et al. Absence of evidence for the participation of the macrophage cellular prion protein in infection with Brucella suis. Infect. Immun.73, 6229–6236 (2005). CASPubMedPubMed Central Google Scholar
Gonzalez-Iglesias, R. et al. Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J. Mol. Biol.319, 527–540 (2002). PubMed Google Scholar
Kocisko, D. A. et al. Potent antiscrapie activities of degenerate phosphorothioate oligonucleotides. Antimicrob. Agents Chemother.50, 1034–1044 (2006). CASPubMedPubMed Central Google Scholar
Vana, K. & Weiss, S. A Trans-dominant negative 37kDa/67kDa laminin receptor mutant impairs PrPSc propagation in scrapie-infected neuronal cells. J. Mol. Biol.358, 57–66 (2006). CASPubMed Google Scholar
Morel, E. et al. Bovine prion is endocytosed by human enterocytes via the 37 kDa/67 kDa laminin receptor. Am. J. Pathol.167, 1033–1042 (2005). CASPubMedPubMed Central Google Scholar
Hundt, C. et al. Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J.20, 5876–5886 (2001). CASPubMedPubMed Central Google Scholar
Leucht, C. et al. Knock-down of the 37-kDa/67-kDa laminin receptor in mouse brain by transgenic expression of specific antisense LRP RNA. Transgenic Res.13, 81–85 (2004). CASPubMed Google Scholar
Kuczius, T. et al. Cellular prion protein acquires resistance to proteolytic degradation following copper ion binding. Biol. Chem.385, 739–747 (2004). CASPubMed Google Scholar
Quaglio, E., Chiesa, R. & Harris, D. A. Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J. Biol. Chem.276, 11432–11438 (2001). CASPubMed Google Scholar
Hijazi, N., Shaked, Y., Rosenmann, H., Ben-Hur, T. & Gabizon, R. Copper binding to PrPC may inhibit prion disease propagation. Brain Res.993, 192–200 (2003). CASPubMed Google Scholar
Kiachopoulos, S., Heske, J., Tatzelt, J. & Winklhofer, K. F. Misfolding of the prion protein at the plasma membrane induces endocytosis, intracellular retention and degradation. Traffic.5, 426–436 (2004). CASPubMed Google Scholar
Sigurdsson, E. M. et al. Copper chelation delays the onset of prion disease. J. Biol. Chem.278, 46199–46202 (2003). CASPubMed Google Scholar
McKenzie, D. et al. Reversibility of scrapie inactivation is enhanced by copper. J. Biol. Chem.273, 25545–25547 (1998). CASPubMed Google Scholar
Nishina, K., Jenks, S. & Supattapone, S. Ionic strength and transition metals control PrPSc protease resistance and conversion-inducing activity. J. Biol. Chem.279, 40788–40794 (2004). CASPubMed Google Scholar
Orem, N. R., Geoghegan, J. C., Deleault, N. R., Kascsak, R. & Supattapone, S. Copper (II) ions potently inhibit purified PrPres amplification. J. Neurochem.96, 1409–1415 (2006). CASPubMed Google Scholar
Bocharova, O. V., Breydo, L., Salnikov, V. V. & Baskakov, I. V. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry44, 6776–6787 (2005). CASPubMed Google Scholar
Ben-Zaken, O. et al. Cellular heparan sulfate participates in the metabolism of prions. J. Biol. Chem.278, 40041–40049 (2003). CASPubMed Google Scholar
Magalhaes, A. C. et al. Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J. Neurosci.25, 5207–5216 (2005). CASPubMedPubMed Central Google Scholar
Baron, G. S., Wehrly, K., Dorward, D. W., Chesebro, B. & Caughey, B. Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes. EMBO J.21, 1031–1040 (2002). CASPubMedPubMed Central Google Scholar
Graner, E. et al. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res. Mol. Brain Res.76, 85–92 (2000). CASPubMed Google Scholar
Chen, S., Mange, A., Dong, L., Lehmann, S. & Schachner, M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol. Cell. Neurosci.22, 227–233 (2003). CASPubMed Google Scholar
Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science303, 1514–1516 (2004). ADSCASPubMed Google Scholar
Taylor, D. R., Watt, N. T., Perera, W. S. & Hooper, N. M. Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J. Cell Sci.118, 5141–5153 (2005). CASPubMed Google Scholar
Schneider, B. et al. NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc. Natl Acad. Sci. USA100, 13326–13331 (2003). ADSCASPubMedPubMed Central Google Scholar
Cashman, N. R. et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell61, 185–192 (1990). CASPubMed Google Scholar
Jouvin-Marche, E. et al. Overexpression of cellular prion protein induces an antioxidant environment altering T cell development in the thymus. J. Immunol.176, 3490–3497 (2006). CASPubMed Google Scholar
Dodelet, V. C. & Cashman, N. R. Prion protein expression in human leukocyte differentiation. Blood91, 1556–1561 (1998). CASPubMed Google Scholar
Caughey, B. & Raymond, G. J. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J. Biol. Chem.266, 18217–18223 (1991). CASPubMed Google Scholar
Borchelt, D. R., Taraboulos, A. & Prusiner, S. B. Evidence for synthesis of scrapie prion protein in the endocytic pathway. J. Biol. Chem.267, 16188–16199 (1992). CASPubMed Google Scholar
Campana, V., Sarnataro, D. & Zurzolo, C. The highways and byways of prion protein trafficking. Trends Cell Biol.15, 102–111 (2005). CASPubMed Google Scholar
Caughey, B., Raymond, G. J., Ernst, D. & Race, R. E. N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J. Virol.65, 6597–6603 (1991). CASPubMedPubMed Central Google Scholar
Uehara, T. et al. S-nitrosylated protein–disulphide isomerase links protein misfolding to neurodegeneration. Nature441, 513–517 (2006). ADSCASPubMed Google Scholar
Kocisko, D. A. et al. A porphyrin increases survival time of mice after intracerebral prion infection. Antimicrob. Agents Chemother.50, 759–761 (2006). CASPubMedPubMed Central Google Scholar
Raymond, G. J. et al. Inhibition of protease-resistant prion protein formation in a transformed deer cell line infected with chronic wasting disease. J. Virol.80, 596–604 (2006). CASPubMedPubMed Central Google Scholar
Cashman, N. R. & Caughey, B. Prion diseases — close to effective therapy? Nature Rev. Drug Discov.3, 874–884 (2004). CAS Google Scholar
Doh-ura, K. et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J. Virol.78, 4999–5006 (2004). CASPubMedPubMed Central Google Scholar
Caughey, B. et al. Prions and spongiform encephalopathy (TSE) chemotherapeutics: a common mechanism for anti-TSE compounds? Acc. Chem. Res.39, 646–653 (2006). CASPubMed Google Scholar
Caughey, B., Brown, K., Raymond, G. J., Katzenstien, G. E. & Thresher, W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and Congo red. J. Virol.68, 2135–2141 (1994). CASPubMedPubMed Central Google Scholar
Warner, R. G., Hundt, C., Weiss, S. & Turnbull, J. E. Identification of the heparan sulfate binding sites in the cellular prion protein. J. Biol. Chem.277, 18421–18430 (2002). CASPubMed Google Scholar
Shyng, S. L., Lehmann, S., Moulder, K. L. & Harris, D. A. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J. Biol. Chem.270, 30221–30229 (1995). CASPubMed Google Scholar
Yin, S. et al. Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack. J. Biol. Chem.281, 10698–10705 (2006). CASPubMed Google Scholar