Two levels of protection for the B cell genome during somatic hypermutation (original) (raw)
Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem.76, 1–22 (2007) ArticleCAS Google Scholar
Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene20, 5580–5594 (2001) ArticleCAS Google Scholar
Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science280, 1750–1752 (1998) ArticleCASADS Google Scholar
Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA95, 11816–11821 (1998) ArticleCASADS Google Scholar
Gordon, M. S., Kanegai, C. M., Doerr, J. R. & Wall, R. Somatic hypermutation of the B cell receptor genes B29 (Ig beta, CD79b) and mb1 (Ig alpha, CD79a). Proc. Natl Acad. Sci. USA100, 4126–4131 (2003) ArticleCASADS Google Scholar
Muschen, M. et al. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J. Exp. Med.192, 1833–1839 (2000) ArticleCAS Google Scholar
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412, 341–346 (2001) ArticleCASADS Google Scholar
Parsa, J. Y. et al. AID mutates a non-immunoglobulin transgene independent of chromosomal position. Mol. Immunol.44, 567–575 (2007) ArticleCAS Google Scholar
Wang, C. L., Harper, R. A. & Wabl, M. Genome-wide somatic hypermutation. Proc. Natl Acad. Sci. USA101, 7352–7356 (2004) ArticleCASADS Google Scholar
Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr. Opin. Immunol.18, 164–174 (2006) ArticleCAS Google Scholar
Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science298, 1424–1427 (2002) ArticleCASADS Google Scholar
Shen, H. M., Michael, N., Kim, N. & Storb, U. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int. Immunol.12, 1085–1093 (2000) ArticleCAS Google Scholar
Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell16, 163–171 (2004) ArticleCAS Google Scholar
Shen, H. M., Tanaka, A., Bozek, G., Nicolae, D. & Storb, U. Somatic hypermutation and class switch recombination in _Msh6_-/-_Ung_-/- double-knockout mice. J. Immunol.177, 5386–5392 (2006) ArticleCAS Google Scholar
Xue, K., Rada, C. & Neuberger, M. S. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in _msh2_-/-_ung_-/- mice. J. Exp. Med.203, 2085–2094 (2006) ArticleCAS Google Scholar
Michael, N. et al. The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity19, 235–242 (2003) ArticleCAS Google Scholar
Odegard, V. H. & Schatz, D. G. Targeting of somatic hypermutation. Nature Rev. Immunol.6, 573–583 (2006) ArticleCAS Google Scholar
Duquette, M. L., Huber, M. D. & Maizels, N. G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas. Cancer Res.67, 2586–2594 (2007) ArticleCAS Google Scholar
Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell21, 201–214 (2006) ArticleCAS Google Scholar
Ramiro, A. R. et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature440, 105–109 (2006) ArticleCASADS Google Scholar
Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature446, 758–764 (2007) ArticleCASADS Google Scholar
Janz, S. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst.)5, 1213–1224 (2006) ArticleCAS Google Scholar
Poltoratsky, V., Prasad, R., Horton, J. K. & Wilson, S. H. Down-regulation of DNA polymerase beta accompanies somatic hypermutation in human BL2 cell lines. DNA Repair (Amst.)6, 244–253 (2007) ArticleCAS Google Scholar
Reynaud, C. A., Aoufouchi, S., Faili, A. & Weill, J. C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nature Immunol.4, 631–638 (2003) ArticleCAS Google Scholar
Bindra, R. S. & Glazer, P. M. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network. Cancer Lett.252, 93–103 (2007) ArticleCAS Google Scholar
Rosenberg, B. R. & Papavasiliou, F. N. Beyond SHM and CSR: AID and related cytidine deaminases in the host response to viral infection. Adv. Immunol.94, 215–244 (2007) ArticleCAS Google Scholar
Epeldegui, M., Hung, Y. P., McQuay, A., Ambinder, R. F. & Martinez-Maza, O. Infection of human B cells with Epstein-Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol. Immunol.44, 934–942 (2007) ArticleCAS Google Scholar
Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl Acad. Sci. USA101, 4262–4267 (2004) ArticleCASADS Google Scholar
Matsumoto, Y. et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nature Med.13, 470–476 (2007) ArticleCAS Google Scholar
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA100, 9440–9445 (2003) ArticleMathSciNetCASADS Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000) ArticleCAS Google Scholar
Reitmair, A. H. et al. MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nature Genet.11, 64–70 (1995) ArticleCAS Google Scholar
Nilsen, H. et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell5, 1059–1065 (2000) ArticleCAS Google Scholar
Yu, D. et al. Axon growth and guidance genes identify T-dependent germinal centre B cells. Immunol. Cell Biol.86, 3–14 (2008) ArticleCAS Google Scholar
Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl Acad. Sci. USA100, 2639–2644 (2003) ArticleCASADS Google Scholar
Alizadeh, A. et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb. Symp. Quant. Biol.64, 71–78 (1999) ArticleCAS Google Scholar
Suzuki, Y., Yamashita, R., Nakai, K. & Sugano, S. DBTSS: DataBase of human transcriptional start sites and full-length cDNAs. Nucleic Acids Res.30, 328–331 (2002) ArticleCAS Google Scholar
Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer4, 177–183 (2004) ArticleCAS Google Scholar
Auer, R. L. et al. Identification of a potential role for POU2AF1 and BTG4 in the deletion of 11q23 in chronic lymphocytic leukemia. Genes Chromosom. Cancer43, 1–10 (2005) ArticleCAS Google Scholar
Neuberger, M. S. et al. Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol. Rev.162, 107–116 (1998) ArticleCAS Google Scholar
Huang, X. On global sequence alignment. Comput. Appl. Biosci.10, 227–235 (1994) CASPubMed Google Scholar
Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature407, 513–516 (2000) ArticleCASADS Google Scholar
Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res.8, 186–194 (1998) ArticleCAS Google Scholar
Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res.8, 175–185 (1998) ArticleCAS Google Scholar
Goossens, T., Klein, U. & Kuppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA95, 2463–2468 (1998) ArticleCASADS Google Scholar
Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res.32, D493–D496 (2004) ArticleCAS Google Scholar
Kent, W. J. et al. The human genome browser at UCSC. Genome Res.12, 996–1006 (2002) ArticleCAS Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA102, 15545–15550 (2005) ArticleCASADS Google Scholar