Cyert, M. S. Regulation of nuclear localization during signaling. J. Biol. Chem.276, 20805–20808 (2001) ArticleCAS Google Scholar
Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev.24, 469–486 (2000) ArticleCAS Google Scholar
Kyriakis, J. M. The integration of signaling by multiprotein complexes containing Raf kinases. Biochim. Biophys. Acta1773, 1238–1247 (2007) ArticleCAS Google Scholar
Stathopoulos-Gerontides, A., Guo, J. J. & Cyert, M. S. Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev.13, 798–803 (1999) ArticleCAS Google Scholar
Yoshimoto, H. et al. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae . J. Biol. Chem.277, 31079–31088 (2002) ArticleCAS Google Scholar
Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature425, 686–691 (2003) ArticleADSCAS Google Scholar
Mettetal, J. T. et al. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae . Science319, 482–484 (2008) ArticleADSCAS Google Scholar
Hersen, P. et al. Signal processing by the HOG MAP kinase pathway. Proc. Natl Acad. Sci. USA105, 7165–7170 (2008) ArticleADSCAS Google Scholar
Suel, G. M. et al. Tunability and noise dependence in differentiation dynamics. Science315, 1716–1719 (2007) ArticleADS Google Scholar
Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature425, 737–741 (2003) ArticleADSCAS Google Scholar
Di Talia, S. et al. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature448, 947–951 (2007) ArticleADSCAS Google Scholar
Fewtrell, C. Ca2+ oscillations in non-excitable cells. Annu. Rev. Physiol.55, 427–454 (1993) ArticleCAS Google Scholar
Wiesenberger, G. et al. Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae . Eukaryot. Cell6, 592–599 (2007) ArticleCAS Google Scholar
Boustany, L. M. & Cyert, M. S. Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site. Genes Dev.16, 608–619 (2002) ArticleCAS Google Scholar
Roy, J. et al. A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function. Mol. Cell25, 889–901 (2007) ArticleCAS Google Scholar
Breuder, T. et al. Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc. Natl Acad. Sci. USA91, 5372–5376 (1994) ArticleADSCAS Google Scholar
Jacquet, M. et al. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae . J. Cell Biol.161, 497–505 (2003) ArticleCAS Google Scholar
Garmendia-Torres, C., Goldbeter, A. & Jacquet, M. Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr. Biol.17, 1044–1049 (2007) ArticleCAS Google Scholar
Medvedik, O. et al. MSN2 and MSN4 Link calorie restriction and tor to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae . PLoS Biol.5, e261 (2007) Article Google Scholar
Stathopoulos, A. M. & Cyert, M. S. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev.11, 3432–3444 (1997) ArticleCAS Google Scholar
Golding, I. et al. Real-time kinetics of gene activity in individual bacteria. Cell123, 1025–1036 (2005) ArticleCAS Google Scholar
Raj, A. et al. Stochastic mRNA synthesis in mammalian cells. PLoS Biol.4, e309 (2006) Article Google Scholar
Rodriguez, A. J. et al. Visualization of mRNA translation in living cells. J. Cell Biol.175, 67–76 (2006) ArticleCAS Google Scholar
Elowitz, M. B. et al. Stochastic gene expression in a single cell. Science297, 1183–1186 (2002) ArticleADSCAS Google Scholar
Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nature Genet.38, 636–643 (2006) ArticleCAS Google Scholar
Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature440, 358–362 (2006) ArticleADSCAS Google Scholar
Friedman, N., Cai, L. & Xie, X. S. Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett.97, 168302-1–168302-4 (2006) ArticleADS Google Scholar
Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet.6, 451–464 (2005) ArticleCAS Google Scholar
Kaufmann, B. B. & van Oudenaarden, A. Stochastic gene expression: from single molecules to the proteome. Curr. Opin. Genet. Dev.17, 107–112 (2007) ArticleCAS Google Scholar
Maheshri, N. & O’Shea, E. K. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct.36, 413–434 (2007) ArticleCAS Google Scholar
Newman, J. R. et al. Single-cell proteomic analysis of S.cerevisiae reveals the architecture of biological noise. Nature441, 840–846 (2006) ArticleADSCAS Google Scholar
Ozbudak, E. M. et al. Regulation of noise in the expression of a single gene. Nature Genet.31, 69–73 (2002) ArticleCAS Google Scholar
Sigal, A. et al. Variability and memory of protein levels in human cells. Nature444, 643–646 (2006) ArticleADSCAS Google Scholar
Yu, J. et al. Probing gene expression in live cells, one protein molecule at a time. Science311, 1600–1603 (2006) ArticleADSCAS Google Scholar
Rosenfeld, N. et al. Gene regulation at the single-cell level. Science307, 1962–1965 (2005) ArticleADSCAS Google Scholar
Matheos, D. P. et al. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae . Genes Dev.11, 3445–3458 (1997) ArticleCAS Google Scholar
Armstrong, E. H. A method of reducing disturbances in radio signaling by a system of frequency modulation. Proc. Inst. Radio Eng.24, 689–740 (1936) Google Scholar
Song, G. B., Buck, N. V. & Agrawal, B. N. Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper. J. Guid. Control Dyn.22, 433–440 (1999) ArticleADS Google Scholar
Adrian, E. D. & Zotterman, Y. The impulses produced by sensory nerve-endings: Part II. The response of a single end-organ. J. Physiol. (Lond.)61, 151–171 (1926) ArticleCAS Google Scholar
Sarpeshkar, R. Analog versus digital: extrapolating from electronics to neurobiology. Neural Comput.10, 1601–1638 (1998) ArticleCAS Google Scholar
Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature392, 933–936 (1998) ArticleADSCAS Google Scholar
Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. Mol. Syst. Biol.2, 2006.0033 (2006) Article Google Scholar
Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science306, 704–708 (2004) ArticleADSCAS Google Scholar
Friedman, N. et al. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol.3, e238 (2005) Article Google Scholar
Sheff, M. A. & Thorn, K. S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae . Yeast21, 661–670 (2004) ArticleCAS Google Scholar
Gietz, R. D. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol.350, 87–96 (2002) ArticleCAS Google Scholar