Powell, E. O. An outline of the pattern of bacterial generation times. J. Gen. Microbiol.18, 382–417 (1958). ArticleCASPubMed Google Scholar
Singh, U. N. Polyribosomes and unstable messenger RNA: a stochastic model of protein synthesis. J. Theor. Biol.25, 444–460 (1969). ArticleCASPubMed Google Scholar
Maloney, P. C. & Rotman, B. Distribution of suboptimally induces-D-galactosidase in Escherichia coli. The enzyme content of individual cells. J. Mol. Biol.73, 77–91 (1973). ArticleCASPubMed Google Scholar
Spudich, J. L. & Koshland, D. E. Jr. Non-genetic individuality: chance in the single cell. Nature262, 467–471 (1976). ArticleCASPubMed Google Scholar
Rigney, D. R. & Schieve, W. C. Stochastic model of linear, continuous protein synthesis in bacterial populations. J. Theor. Biol.69, 761–766 (1977). ArticleCASPubMed Google Scholar
Berg, O. G. A model for the statistical fluctuations of protein numbers in a microbial population. J. Theor. Biol.71, 587–603 (1978). ArticleCASPubMed Google Scholar
Carrier, T. A. & Keasling, J. D. Mechanistic modeling of prokaryotic mRNA decay. J. Theor. Biol.189, 195–209 (1997). ArticleCASPubMed Google Scholar
Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage-λ-infected Escherichia coli cells. Genetics149, 1633–1648 (1998). CASPubMedPubMed Central Google Scholar
Carrier, T. A. & Keasling, J. D. Investigating autocatalytic gene expression systems through mechanistic modeling. J. Theor. Biol.201, 25–36 (1999). ArticleCASPubMed Google Scholar
Hasty, J., Pradines, J., Dolnik, M. & Collins, J. J. Noise-based switches and amplifiers for gene expression. Proc. Natl Acad. Sci. USA97, 2075–2080 (2000). ArticleCASPubMedPubMed Central Google Scholar
Paulsson, J., Berg, O. G. & Ehrenberg, M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl Acad. Sci. USA97, 7148–7153 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kepler, T. B. & Elston, T. C. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J.81, 3116–3136 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kierzek, A. M., Zaim, J. & Zielenkiewicz, P. The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J. Biol. Chem.276, 8165–8172 (2001). ArticleCASPubMed Google Scholar
Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy number control. Q. Rev. Biophys.34, 1–59 (2001). ArticleCASPubMed Google Scholar
Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet.31, 69–73 (2002). An experimental computational study of noise in prokaryotic gene expression, focusing on contributions from the processes of transcription and translation. ArticleCASPubMed Google Scholar
Gonze, D., Halloy, J. & Goldbeter, A. Robustness of circadian rhythms with respect to molecular noise. Proc. Natl Acad. Sci. USA99, 673–678 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wolf, D. M. & Arkin, A. P. Fifteen minutes of fim: control of type 1 pili expression in E. coli. OMICS6, 91–114 (2002). ArticleCASPubMed Google Scholar
Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA99, 5988–5992 (2002). ArticleCASPubMedPubMed Central Google Scholar
Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA99, 12795–12800 (2002). ArticleCASPubMedPubMed Central Google Scholar
Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature422, 633–637 (2003). A study of noise in eukaryotic gene expression, highlighting how the processes of transcription and translation contribute to this. ArticleCASPubMed Google Scholar
Sato, K., Ito, Y., Yomo, T. & Kaneko, K. On the relation between fluctuation and response in biological systems. Proc. Natl Acad. Sci. USA100, 14086–14090 (2003). ArticleCASPubMedPubMed Central Google Scholar
Simpson, M. L., Cox, C. D. & Sayler, G. S. Frequency domain analysis of noise in autoregulated gene circuits. Proc. Natl Acad. Sci. USA100, 4551–4556 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shibata, T. Fluctuating reaction rates and their application to problems of gene expression. Phys. Rev. E67, 061906 (2003). ArticleCAS Google Scholar
Pirone, J. R. & Elston, T. C. Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. J. Theor. Biol.226, 111–121 (2004). ArticleCASPubMed Google Scholar
Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science304, 1811–1814 (2004). A study of the contributions of intrinsic and extrinsic noise in eukaryotic gene expression. ArticleCASPubMedPubMed Central Google Scholar
Simpson, M. L., Cox, C. D. & Sayler, G. S. Frequency domain chemical Langevin analysis of stochasticity in gene transcriptional regulation. J. Theor. Biol.229, 383–394 (2004). ArticleCASPubMed Google Scholar
Tao, Y. Intrinsic and external noise in an auto-regulatory genetic network. J. Theor. Biol.229, 147–156 (2004). ArticleCASPubMed Google Scholar
Tomioka, R., Kimura, H., T, J. K. & Aihara, K. Multivariate analysis of noise in genetic regulatory networks. J. Theor. Biol.229, 501–521 (2004). ArticleCASPubMed Google Scholar
Orrell, D. & Bolouri, H. Control of internal and external noise in genetic regulatory networks. J. Theor. Biol.230, 301–312 (2004). ArticleCASPubMed Google Scholar
Karmakar, R. & I., B. Graded and binary responses in stochastic gene expression. Phys. Biol.1, 197–204 (2004). ArticleCASPubMed Google Scholar
Morishita, Y. & Aihara, K. Noise-reduction through interaction in gene expression and biochemical reaction processes. J. Theor. Biol.228, 315–325 (2004). ArticleCASPubMed Google Scholar
Swain, P. S. Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J. Mol. Biol.344, 965–976 (2004). ArticleCASPubMed Google Scholar
Shibata, T. & Fujimoto, K. Noisy signal amplification in ultrasensitive signal transduction. Proc. Natl Acad. Sci. USA102, 331–336 (2005). ArticleCASPubMed Google Scholar
Allen, R. J., Warren, P. B. & Ten Wolde, P. R. Sampling rare switching events in biochemical networks. Phys. Rev. Lett.94, 018104 (2005). ArticleCASPubMed Google Scholar
Wang, Z. W., Hou, Z. H. & Xin, H. W. Internal noise stochastic resonance of synthetic gene network. Chem. Phys. Lett.401, 307–311 (2005). ArticleCAS Google Scholar
Roma, D. M., O'Flanagan, R. A., Ruckenstein, A. E., Sengupta, A. M. & Mukhopadhyay, R. Optimal path to epigenetic switching. Phys. Rev. E71, 011902 (2005). ArticleCAS Google Scholar
Forger, D. B. & Peskin, C. S. Stochastic simulation of the mammalian circadian clock. Proc. Natl Acad. Sci. USA102, 321–324 (2005). ArticleCASPubMed Google Scholar
England, J. L. & Cardy, J. Morphogen gradient from a noisy source. Phys. Rev. Lett.94, 078101 (2005). ArticleCASPubMed Google Scholar
van Kampen, N. G. Stochastic Processes in Physics and Chemistry (North-Holland Personal Library, Amsterdam, 1992). Google Scholar
Paldi, A. Stochastic gene expression during cell differentiation: order from disorder? Cell. Mol. Life. Sci.60, 1775–1778 (2003). ArticleCASPubMed Google Scholar
Ko, M. S., Nakauchi, H. & Takahashi, N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J.9, 2835–2842 (1990). ArticleCASPubMedPubMed Central Google Scholar
Ross, I. L., Browne, C. M. & Hume, D. A. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol.72, 177–185 (1994). ArticleCASPubMed Google Scholar
Simpson, P. Notch signalling in development: on equivalence groups and asymmetric developmental potential. Curr. Opin. Genet. Dev.7, 537–542 (1997). ArticleCASPubMed Google Scholar
Graubert, T. A. et al. Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene. Nucleic Acids Res.26, 2849–2858 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nutt, S. L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nature Genet.21, 390–395 (1999). ArticleCASPubMed Google Scholar
Hume, D. A. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood96, 2323–2328 (2000). CASPubMed Google Scholar
Biggar, S. R. & Crabtree, G. R. Cell signaling can direct either binary or graded transcriptional responses. EMBO J.20, 3167–3176 (2001). ArticleCASPubMedPubMed Central Google Scholar
Joers, A., Jaks, V., Kase, J. & Maimets, T. p53-dependent transcription can exhibit both on/off and graded response after genotoxic stress. Oncogene23, 6175–6185 (2004). ArticleCASPubMed Google Scholar
Fiering, S., Whitelaw, E. & Martin, D. I. To be or not to be active: the stochastic nature of enhancer action. Bioessays22, 381–387 (2000). ArticleCASPubMed Google Scholar
Rosenfeld, N. Y., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single cell level. Science, 307, 1962–1965 (2005). ArticleCASPubMed Google Scholar
Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science297, 1183–1186 (2002). A study of the impact of intrinsic and extrinsic noise on prokaryotic gene expression. ArticleCASPubMed Google Scholar
Hoosangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA102, 3581–3586 (2005). This study investigates how the length of transcriptional regulatory cascades affects the propagation of noise in gene expression. ArticleCAS Google Scholar
Pedraza, J. M. & van Oudenaarden, A. Noise propagation in genetic networks. Science307, 1965–1969 (2005). Another important study of the propagation of gene-expression noise in a transcriptional regulatory cascade. ArticleCASPubMed Google Scholar
Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature405, 590–593 (2000). This paper demonstrates that negative feedback reduces population heterogeneity. ArticleCASPubMed Google Scholar
Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J.20, 2528–2535 (2001). A study of the effect of positive feedback on population variability. ArticleCASPubMedPubMed Central Google Scholar
Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA100, 7714–7719 (2003). This study investigates the effects of varying feedback strength in a positive-feedback gene network. ArticleCASPubMedPubMed Central Google Scholar
Louis, M. & Becskei, A. Binary and graded responses in gene networks. Sci. STKE2002, PE33 (2002). PubMed Google Scholar
Savageau, M. A. Comparison of classical and autogenous systems of regulation in inducible operons. Nature252, 546–549 (1974). ArticleCASPubMed Google Scholar
Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature420, 231–237 (2002). An excellent review of stochastic simulation methods, noise-control mechanisms and experimental results. ArticleCASPubMed Google Scholar
Monk, N. A. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol.13, 1409–1413 (2003). ArticleCASPubMed Google Scholar
Lev Bar-Or, R. et al. Generation of oscillations by the p53–Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl Acad. Sci. USA97, 11250–11255 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lahav, G. et al. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nature Genet.36, 147–150 (2004). ArticleCASPubMed Google Scholar
Dale, J. K. et al. Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock. Nature421, 275–278 (2003). ArticleCASPubMed Google Scholar
Pourquie, O. The segmentation clock: converting embryonic time into spatial pattern. Science301, 328–330 (2003). ArticleCASPubMed Google Scholar
Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol.13, 1398–1408 (2003). ArticleCASPubMed Google Scholar
Rida, P. C., Le Minh, N. & Jiang, Y. J. A Notch feeling of somite segmentation and beyond. Dev. Biol.265, 2–22 (2004). ArticleCASPubMed Google Scholar
Delbruck, M. Statistical fluctuations in autocatalytic reactions. J. Chem. Phys.8, 120–124 (1945). Article Google Scholar
Epstein, I. R. The consequences of imperfect mixing in autocatalytic chemical and biological systems. Nature374, 321–327 (1995). ArticleCASPubMed Google Scholar
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & Van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature427, 737–740 (2004). ArticleCASPubMed Google Scholar
Acar, M. B., & van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature (in the press). A study of stochastic effects in an endogenous genetic network.
Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol.2, e137 (2004). A bioinformatics study that provides support for the hypothesis that gene-expression noise is subject to natural selection. ArticlePubMedPubMed Central Google Scholar
McAdams, H. H. & Arkin, A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet.15, 65–69 (1999). ArticleCASPubMed Google Scholar
Booth, I. R. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol.78, 19–30 (2002). ArticlePubMed Google Scholar
Aertsen, A. & Michiels, C. W. Stress and how bacteria cope with death and survival. Crit. Rev. Microbiol.30, 263–273 (2004). ArticleCASPubMed Google Scholar
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science305, 1622–1625 (2004). ArticleCASPubMed Google Scholar
Maughan, H. & Nicholson, W. L. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J. Bacteriol.186, 2212–2214 (2004). ArticleCASPubMedPubMed Central Google Scholar
Levin, B. R. Microbiology. Noninherited resistance to antibiotics. Science305, 1578–1579 (2004). ArticleCASPubMed Google Scholar
van Roon, M. A., Aten, J. A., van Oven, C. H., Charles, R. & Lamers, W. H. The initiation of hepatocyte-specific gene expression within embryonic hepatocytes is a stochastic event. Dev. Biol.136, 508–516 (1989). ArticleCASPubMed Google Scholar
Sternberg, P. W. & Felix, M. A. Evolution of cell lineage. Curr. Opin. Genet. Dev.7, 543–550 (1997). ArticleCASPubMed Google Scholar
Enver, T., Heyworth, C. M. & Dexter, T. M. Do stem cells play dice? Blood92, 348–351; discussion 352 (1998). CASPubMed Google Scholar
Abkowitz, J. L., Catlin, S. N. & Guttorp, P. Evidence that hematopoiesis may be a stochastic process in vivo. Nature Med.2, 190–197 (1996). ArticleCASPubMed Google Scholar
Kupiec, J. J. A Darwinian theory for the origin of cellular differentiation. Mol. Gen. Genet.255, 201–208 (1997). ArticleCASPubMed Google Scholar
Deenick, E. K., Hasbold, J. & Hodgkin, P. D. Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J. Immunol.163, 4707–4714 (1999). CASPubMed Google Scholar
Blewitt, M. E., Chong, S. & Whitelaw, E. How the mouse got its spots. Trends Genet.20, 550–554 (2004). ArticleCASPubMed Google Scholar
Wardle, F. C. & Smith, J. C. Refinement of gene expression patterns in the early Xenopus embryo. Development131, 4687–4696 (2004). ArticleCASPubMed Google Scholar
Kurakin, A. Self-organization vs Watchmaker: stochastic gene expression and cell differentiation. Dev. Genes Evol.215, 46–52 (2005). ArticlePubMed Google Scholar
LaForge, B., Guez, D., Martinez, M. & Kupiec, J. J. Modeling embryogenesis and cancer: an approach based on an equilibrium between autostabilization of stochastic gene expression and the interdependence of cells for proliferation. Prog. Biophys. Mol. Biol.89, 93–120 (2005). ArticleCASPubMed Google Scholar
Russo, E., Martienssen, R. & Riggs, A. D. Epigenetic Mechanisms of Gene Regulation (Cold Spring Harbor Lab. Press, Plainview, New York, 1996). Google Scholar
Rakyan, V. K., Preis, J., Morgan, H. D. & Whitelaw, E. The marks, mechanisms and memory of epigenetic states in mammals. Biochem. J.356, 1–10 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M. & Riggs, A. D. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl Acad. Sci. USA87, 8252–8256 (1990). ArticleCASPubMedPubMed Central Google Scholar
Lorincz, M. C., Schubeler, D., Hutchinson, S. R., Dickerson, D. R. & Groudine, M. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol. Cell. Biol.22, 7572–7580 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sato, N., Nakayama, M. & Arai, K. Fluctuation of chromatin unfolding associated with variation in the level of gene expression. Genes Cells9, 619–630 (2004). ArticleCASPubMed Google Scholar
Fourel, G., Magdinier, F. & Gilson, E. Insulator dynamics and the setting of chromatin domains. Bioessays26, 523–532 (2004). ArticleCASPubMed Google Scholar
Chelly, J., Concordet, J. P., Kaplan, J. C. & Kahn, A. Illegitimate transcription: transcription of any gene in any cell type. Proc. Natl Acad. Sci. USA86, 2617–2621 (1989). ArticleCASPubMedPubMed Central Google Scholar
Bird, A. P. Gene number, noise reduction and biological complexity. Trends Genet.11, 94–100 (1995). ArticleCASPubMed Google Scholar
Jablanka, E. & Regev, A. Gene number, methylation and biological complexity. Trends Genet.11, 383–384 (1995). ArticleCASPubMed Google Scholar
Ahmad, K. & Henikoff, S. Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell104, 839–847 (2001). ArticleCASPubMed Google Scholar
Cheutin, T. et al. Maintenance of S heterochromatin domains by dynamic HP1 binding. Science299, 721–725 (2003). ArticleCASPubMed Google Scholar
Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science299, 719–721 (2003). ArticleCASPubMed Google Scholar
Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell63, 751–762 (1990). ArticleCASPubMed Google Scholar
Lundgren, M. et al. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell103, 733–743 (2000). ArticleCASPubMed Google Scholar
Seidman, J. G. & Seidman, C. Transcription factor haploinsufficiency: when half a loaf is not enough. J. Clin. Invest.109, 451–455 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cook, D. L., Gerber, A. N. & Tapscott, S. J. Modeling stochastic gene expression: implications for haploinsufficiency. Proc. Natl Acad. Sci. USA95, 15641–15646 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ferrer, J. A genetic switch in pancreatic β-cells: implications for differentiation and haploinsufficiency. Diabetes51, 2355–2362 (2002). ArticleCASPubMed Google Scholar
Kemkemer, R., Schrank, S., Vogel, W., Gruler, H. & Kaufmann, D. Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc. Natl Acad. Sci. USA99, 13783–13788 (2002). ArticleCASPubMedPubMed Central Google Scholar
Magee, J. A., Abdulkadir, S. A. & Milbrandt, J. Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell3, 273–283 (2003). ArticleCASPubMed Google Scholar
Kuang, Y., Biran, I. & Walt, D. R. Simultaneously monitoring gene expression kinetics and genetic noise in single cells by optical well arrays. Anal. Chem.76, 6282–6286 (2004). ArticleCASPubMed Google Scholar
Metzler, R. The future is noisy: the role of spatial fluctuations in genetic switching. Phys. Rev. Lett.8706, 068103 (2001). ArticleCAS Google Scholar
Droge, P. & Muller-Hill, B. High local protein concentrations at promoters: strategies in prokaryotic and eukaryotic cells. Bioessays23, 179–183 (2001). ArticleCASPubMed Google Scholar
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature403, 339–342 (2000). ArticleCASPubMed Google Scholar
Tchuraev, R. N., Stupak, I. V., Tropynina, T. S. & Stupak, E. E. Epigenes: design and construction of new hereditary units. FEBS Lett.486, 200–202 (2000). ArticleCASPubMed Google Scholar
Kramer, B. P. et al. An engineered epigenetic transgene switch in mammalian cells. Nature Biotechnol.22, 867–870 (2004). ArticleCAS Google Scholar
Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA101, 8414–8419 (2004). ArticleCASPubMedPubMed Central Google Scholar
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature403, 335–338 (2000). ArticleCASPubMed Google Scholar
Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell113, 597–607 (2003). ArticleCASPubMed Google Scholar
Steuer, R., Zhou, C. & Kurths, J. Constructive effects of fluctuations in genetic and biochemical regulatory systems. Biosystems72, 241–251 (2003). ArticleCASPubMed Google Scholar
You, L., Cox, R. S. 3rd, Weiss, R. & Arnold, F. H. Programmed population control by cell–cell communication and regulated killing. Nature428, 868–871 (2004). ArticleCASPubMed Google Scholar
Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature387, 913–917 (1997). ArticleCASPubMed Google Scholar
Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature397, 168–171 (1999). ArticleCASPubMed Google Scholar
Levin, M. D. Noise in gene expression as the source of non-genetic individuality in the chemotactic response of Escherichia coli. FEBS Lett.550, 135–138 (2003). ArticleCASPubMed Google Scholar
Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature428, 574–578 (2004). ArticleCASPubMed Google Scholar
Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J. 3rd & Doyle, J. Robustness of cellular functions. Cell118, 675–685 (2004). ArticleCASPubMed Google Scholar
Kerszberg, M. Noise, delays, robustness, canalization and all that. Curr. Opin. Genet. Dev.14, 440–445 (2004). ArticleCASPubMed Google Scholar
Goulian, M. Robust control in bacterial regulatory circuits. Curr. Opin. Microbiol.7, 198–202 (2004). ArticleCASPubMed Google Scholar
Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet.5, 101–113 (2004). ArticleCASPubMed Google Scholar