An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer (original) (raw)
Hershko, A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ.12, 1191–1197 (2005) ArticleCAS Google Scholar
Kane, R. C., Bross, P. F., Farrell, A. T. & Pazdur, R. VELCADE®: U.S. FDA Approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist8, 508–513 (2003) Article Google Scholar
Kane, R. C. et al. Bortezomib for the treatment of mantle cell lymphoma. Clin. Cancer Res.13, 5291–5294 (2007) ArticleCAS Google Scholar
Nalepa, G., Rolfe, M. & Harper, J. W. Drug discovery in the ubiquitin proteasome system. Nature Rev. Drug Discov.5, 596–613 (2006) ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998) ArticleCAS Google Scholar
Haas, A. L. & Rose, I. A. The mechanism of ubiquitin activating enzyme: A kinetic and equilibrium analysis. J. Biol. Chem.257, 10329–10337 (1982) CASPubMed Google Scholar
Wilkinson, K. D. The discovery of ubiquitin-dependent proteolysis. Proc. Natl Acad. Sci. USA102, 15280–15282 (2005) ArticleADSCAS Google Scholar
Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol.22, 159–180 (2006) ArticleCAS Google Scholar
Gong, L. & Yeh, E. T. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem.274, 12036–12042 (1999) ArticleCAS Google Scholar
Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. NEDD8 on Cullin: building an expressway to protein destruction. Oncogene23, 1985–1997 (2004) ArticleCAS Google Scholar
Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol.6, 9–20 (2005) ArticleCAS Google Scholar
Chiba, T. & Tanaka, K. Cullin-based ubiquitin ligase and its control by NEDD8 conjugation system. Curr. Protein Pept. Sci.5, 177–184 (2004) ArticleCAS Google Scholar
Read, M. A. et al. Nedd8 modification of Cul-1 activates SCFβTrCP-dependent ubiquitination of IκBα. Mol. Cell. Biol.20, 2326–2333 (2000) ArticleCAS Google Scholar
Podust, V. N. et al. A Nedd8 conjugation pathway is essential for proteolytic targeting of p27KIP1 by ubiquitination. Proc. Natl Acad. Sci. USA97, 4579–4584 (2000) ArticleADSCAS Google Scholar
Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell134, 995–1006 (2008) ArticleCAS Google Scholar
Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by NEDD8 conjugation. Mol. Cell32, 21–31 (2008) ArticleCAS Google Scholar
Bohnsack, R. N. & Haas, A. L. Conservation in the mechanism of NEDD8 activation by the human AppBp1-Uba3 heterodimer. J. Biol. Chem.278, 26823–26830 (2003) ArticleCAS Google Scholar
Walden, H., Podgorski, M. S. & Schulman, B. A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature422, 330–334 (2003) ArticleADSCAS Google Scholar
Walden, H. et al. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell12, 1427–1437 (2003) ArticleCAS Google Scholar
Bloch, A. & Coutsogeorgopoulos, C. Inhibition of protein synthesis by 5′-sulfamoyladenosine. Biochemistry10, 4394–4398 (1971) ArticleCAS Google Scholar
Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell78, 761–771 (1994) ArticleCAS Google Scholar
Nishitani, H. et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4 target human Cdt1 for proteolysis. EMBO J.25, 1126–1136 (2006) ArticleCAS Google Scholar
Kondo, T. et al. Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCF Skp2 complex. J. Biol. Chem.279, 27315–27319 (2004) ArticleCAS Google Scholar
Hu, J., McCall, C. M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nature Cell Biol.6, 1003–1009 (2004) ArticleCAS Google Scholar
Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol.1, 193–199 (1999) ArticleCAS Google Scholar
Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol.24, 7130–7139 (2004) ArticleCAS Google Scholar
Nateri, A. S., Riera-Sans, L., DaCosta, C. & Behrens, A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science303, 1374–1378 (2004) ArticleADSCAS Google Scholar
Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von-Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl Acad. Sci. USA97, 10430–10435 (2000) ArticleADSCAS Google Scholar
Ye, X. et al. Recognition of phosphodegron motifs in human cyclin E by the SCFFbw7 ubiquitin ligase. J. Biol. Chem.279, 50110–50119 (2004) ArticleCAS Google Scholar
Donzelli, M. et al. Dual mode of degradation of Cdc25A phosphatase. EMBO J.21, 4875–4884 (2002) ArticleCAS Google Scholar
Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCFβTrCP/Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell4, 813–826 (2003) ArticleCAS Google Scholar
Winston, J. T. et al. The SCFβ-TrCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro . Genes Dev.13, 270–283 (1999) ArticleCAS Google Scholar
Machida, Y. J., Hamlin, J. L. & Dutta, A. Right place, right time and only once: replication initiation in Metazoans. Cell123, 13–24 (2005) ArticleCAS Google Scholar
Arias, E. E. & Walter, J. C. Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev.19, 114–126 (2005) ArticleCAS Google Scholar
Li, X., Zhao, Q., Liao, R., Sun, P. & Wu, X. The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem.278, 30854–30858 (2003) ArticleCAS Google Scholar
Lovejoy, C. A., Lock, K., Yenamandra, A. & Cortez, D. DDB1 maintains genome integrity through regulation of Cdt1. Mol. Cell. Biol.26, 7977–7990 (2006) ArticleCAS Google Scholar
Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of Cdt1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint. Nature Cell Biol.5, 1008–1015 (2003) ArticleCAS Google Scholar
Saxena, S. & Dutta, A. Geminin and p53: deterrents to rereplication in human cancer cells. Cell Cycle2, 283–286 (2003) ArticleCAS Google Scholar
Melixetian, M. et al. Loss of Geminin induces rereplication in the presence of functional p53. J. Cell Biol.165, 473–482 (2004) ArticleCAS Google Scholar
Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell11, 997–1008 (2003) ArticleCAS Google Scholar
Kim, Y. & Kipreos, E. T. Cdt1 degradation to prevent DNA rereplication: conserved and non-conserved pathways. Cell Div.2, 18–27 (2007) Article Google Scholar
Archambault, V., Ikui, A. E., Drapkin, B. J. & Cross, F. R. Disruption of mechanisms that prevent rereplication triggers a DNA damage response. Mol. Cell. Biol.25, 6707–6721 (2005) ArticleCAS Google Scholar
Zhu, W., Chen, Y. & Dutta, A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol. Cell. Biol.24, 7140–7150 (2004) ArticleCAS Google Scholar
Lin, J. J. & Dutta, A. ATR pathway is the primary pathway for activating G2/M checkpoint induction after re-replication. J. Biol. Chem.282, 30357–30362 (2007) ArticleCAS Google Scholar
Handeli, S. & Weintraub, H. The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M and G1. Cell71, 599–611 (1992) ArticleCAS Google Scholar
Chen, Y., McPhie, D. L., Hirschberg, J. & Neve, R. L. The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons. J. Biol. Chem.275, 8929–8935 (2000) ArticleCAS Google Scholar