Hershko, A., Ciechanover, A. & Varshavsky, A. Basic Medical Research Award. The ubiquitin system. Nature Med.6, 1073–1081 (2000). ArticleCASPubMed Google Scholar
Ang, X. L. & Harper, J. W. Interwoven ubiquitination oscillators and control of cell cycle transitions. Sci. STKE pe31 (2004).
Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature413, 311–316 (2001). ArticleCASPubMed Google Scholar
Koh, M. S., Ittmann, M., Kadmon, D., Thompson, T. C. & Leach, F. S. CDC4 gene expression as potential biomarker for targeted therapy in prostate cancer. Cancer Biol. Ther.5, 78–83 (2006). ArticleCASPubMed Google Scholar
Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA98, 5134–5139 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ekholm-Reed, S. et al. Mutation of hCDC4 leads to cell cycle deregulation of cyclin E in cancer. Cancer Res.64, 795–800 (2004). ArticlePubMed Google Scholar
Gandhi, S. & Wood, N. W. Molecular pathogenesis of Parkinson's disease. Hum. Mol. Genet.14 (Spec. No. 2), 2749–2755 (2005). ArticlePubMedCAS Google Scholar
Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron39, 889–909 (2003). ArticleCASPubMed Google Scholar
Vila, M. & Przedborski, S. Genetic clues to the pathogenesis of Parkinson's disease. Nature Med.10 (Suppl.), S58–S62 (2004). ArticlePubMedCAS Google Scholar
Tanaka, K., Suzuki, T., Hattori, N. & Mizuno, Y. Ubiquitin, proteasome and parkin. Biochim. Biophys. Acta1695, 235–247 (2004). ArticleCASPubMed Google Scholar
Al-Kuraya, K. et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res.64, 8534–8540 (2004). ArticleCASPubMed Google Scholar
Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett.420, 25–27 (1997). ArticleCASPubMed Google Scholar
Iwakuma, T. & Lozano, G. MDM2, an introduction. Mol. Cancer Res.1, 993–1000 (2003). CASPubMed Google Scholar
Nakayama, T. et al. MDM2 gene amplification in bone and soft-tissue tumors: association with tumor progression in differentiated adipose-tissue tumors. Int. J. Cancer64, 342–346 (1995). ArticleCASPubMed Google Scholar
Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell91, 325–334 (1997). ArticleCASPubMed Google Scholar
Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science274, 948–953 (1996). ArticleCASPubMed Google Scholar
Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature378, 203–206 (1995). ArticleCASPubMed Google Scholar
Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science302, 1972–1975 (2003). ArticleCASPubMed Google Scholar
Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol.1, 193–199 (1999). ArticleCASPubMed Google Scholar
Hershko, D. et al. Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer91, 1745–1751 (2001). ArticleCASPubMed Google Scholar
Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J.19, 2069–2081 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakayama, K. et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell6, 661–672 (2004). ArticleCASPubMed Google Scholar
Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell123, 773–786 (2005). ArticleCASPubMed Google Scholar
Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science275, 1790–1792 (1997). ArticleCASPubMed Google Scholar
Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA101, 9085–9090 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G. Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell8, 25–33 (2005). ArticleCASPubMed Google Scholar
Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell5, 417–421 (2004). ArticleCASPubMed Google Scholar
Burger, A. M. & Seth, A. K. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer40, 2217–2229 (2004). ArticleCASPubMed Google Scholar
Orlowski, R. Z. et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol.20, 4420–4427 (2002). ArticleCASPubMed Google Scholar
Richardson, P. G. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med.348, 2609–2617 (2003). ArticleCASPubMed Google Scholar
Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med.352, 2487–2498 (2005). This paper, and Reference 34, provide analysis of data from clinical trials on the proteasome inhibitor bortezomib indicating that the proteasome inhibitor is superior to high-dose dexamethasone in the treatment of relapsed multiple myeloma. ArticleCASPubMed Google Scholar
Nalepa, G. & Wade Harper, J. Therapeutic anti-cancer targets upstream of the proteasome. Cancer Treat. Rev.29 (Suppl. 1), 49–57 (2003). ArticleCASPubMed Google Scholar
Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system. Resolution, affinity purification & role in protein breakdown. J. Biol. Chem.258, 8206–8214 (1983). A landmark study that used affinity chromatography with ubiquitin–sepharose to separate and reconstitute the E1–E2–E3 ubiquitin conjugation system, demonstrating that all three components are required for conjugation of ubiquitin to lysine residues in the substrate. ArticleCASPubMed Google Scholar
Ciechanover, A., Elias, S., Heller, H. & Hershko, A. 'Covalent affinity' purification of ubiquitin-activating enzyme. J. Biol. Chem.257, 2537–2542 (1982). ArticleCASPubMed Google Scholar
Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem.255, 7525–7528 (1980). ArticleCASPubMed Google Scholar
Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl Acad. Sci. USA77, 1365–1368 (1980). ArticleCASPubMedPubMed Central Google Scholar
Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. Structure of ubiquitin refined at 1. 8 A resolution. J. Mol. Biol.194, 531–544 (1987). ArticleCASPubMed Google Scholar
Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science243, 1576–1583 (1989). ArticleCASPubMed Google Scholar
Gregori, L., Poosch, M. S., Cousins, G. & Chau, V. A uniform isopeptide-linked multiubiquitin chain is sufficient to target substrate for degradation in ubiquitin-mediated proteolysis. J. Biol. Chem.265, 8354–8357 (1990). ArticleCASPubMed Google Scholar
Huang, D. T. et al. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nature Struct. Mol. Biol.11, 927–935 (2004). ArticleCAS Google Scholar
Huang, D. T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell17, 341–350 (2005). ArticleCASPubMed Google Scholar
Lois, L. M. & Lima, C. D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J.24, 439–451 (2005). Together with references 47 and 48, this study provided the first structural insight into E1-activating enzymes and how they activate ubiquitin-like proteins. These studies also suggested how different E2s are recognized by divergent ubiquitin-like domains located within the E1 enzyme. ArticleCASPubMedPubMed Central Google Scholar
Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Rev. Cancer5, 172–183 (2005). ArticleCAS Google Scholar
Arkin, M. R. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nature Rev. Drug Discov.3, 301–317 (2004). ArticleCAS Google Scholar
Jones, D., Crowe, E., Stevens, T. A. & Candido, E. P. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes & ubiquitin-like proteins. Genome Biol.3, 2.1–2.15 (2002).
Stickle, N. H. et al. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol. Cell Biol.24, 3251–3261 (2004). ArticleCASPubMedPubMed Central Google Scholar
Harper, J. W. Neddylating the guardian; Mdm2 catalyzed conjugation of Nedd8 to p53. Cell118, 2–4 (2004). ArticleCASPubMed Google Scholar
Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. & Lane, D. P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell118, 83–97 (2004). ArticleCASPubMed Google Scholar
Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K. I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem.276, 33111–33120 (2001). ArticleCASPubMed Google Scholar
Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature416, 703–709 (2002). The first structural insight into the cullin-based RING-finger family of ubiquitin ligases. Subsequent studies revealed the structure of related complexes and demonstrate how F-box proteins bind substrates (see also References 102,127,140). ArticleCASPubMed Google Scholar
Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science286, 1321–1326 (1999). ArticleCASPubMed Google Scholar
Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol. Cell Biol.6, 9–20 (2005). ArticleCASPubMed Google Scholar
Fang, S., Lorick, K. L., Jensen, J. P. & Weissman, A. M. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin. Cancer Biol.13, 5–14 (2003). ArticleCASPubMed Google Scholar
Lane, D. P. & Lain, S. Therapeutic exploitation of the p53 pathway. Trends Mol. Med.8, S38–S42 (2002). ArticleCASPubMed Google Scholar
Balint, E. E. & Vousden, K. H. Activation and activities of the p53 tumour suppressor protein. Br. J. Cancer85, 1813–1823 (2001). ArticleCASPubMed Central Google Scholar
Pavletich, N. P., Chambers, K. A. & Pabo, C. O. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev.7, 2556–2564 (1993). ArticleCASPubMed Google Scholar
Vousden, K. H. & Prives, C. P53 and prognosis: new insights and further complexity. Cell120, 7–10 (2005). CASPubMed Google Scholar
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer2, 594–604 (2002). ArticleCAS Google Scholar
Zhang, Z. et al. MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J. Biol. Chem.279, 16000–16006 (2004). ArticleCASPubMed Google Scholar
Wang, H., Nan, L., Yu, D., Agrawal, S. & Zhang, R. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms. Clin. Cancer Res.7, 3613–3624 (2001). CASPubMed Google Scholar
Prasad, G., Wang, H., Agrawal, S. & Zhang, R. Antisense anti-MDM2 oligonucleotides as a novel approach to the treatment of glioblastoma multiforme. Anticancer Res.22, 107–116 (2002). CASPubMed Google Scholar
Zhang, R., Wang, H. & Agrawal, S. Novel antisense anti-MDM2 mixed-backbone oligonucleotides: proof of principle, in vitro and in vivo activities & mechanisms. Curr. Cancer Drug Targets5, 43–49 (2005). ArticlePubMed Google Scholar
Karlsson, G. B. et al. Activation of p53 by scaffold-stabilised expression of Mdm2-binding peptides: visualisation of reporter gene induction at the single-cell level. Br. J. Cancer91, 1488–1494 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bottger, A. et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol.7, 860–869 (1997). ArticleCASPubMed Google Scholar
Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science303, 844–848 (2004). This paper identified the first small-molecule inhibitor of the RING-finger protein MDM2, an E3 for p53. The paper demonstrated that the inhibitor blocks binding of p53 to its interaction site on MDM2, thereby blocking its ability to be ubiquitylated. ArticleCASPubMed Google Scholar
Rubinstein, L. V. et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl Cancer Inst.82, 1113–1118 (1990). ArticleCASPubMed Google Scholar
Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med.10, 1321–1328 (2004). ArticleCASPubMed Google Scholar
Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90, 595–606 (1997). ArticleCASPubMed Google Scholar
Grossman, S. R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science300, 342–344 (2003). ArticleCASPubMed Google Scholar
Zhu, Q., Yao, J., Wani, G., Wani, M. A. & Wani, A. A. Mdm2 mutant defective in binding p300 promotes ubiquitination but not degradation of p53: evidence for the role of p300 in integrating ubiquitination and proteolysis. J. Biol. Chem.276, 29695–29701 (2001). ArticleCASPubMed Google Scholar
Krajewski, M., Ozdowy, P., D'Silva, L., Rothweiler, U. & Holak, T. A. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nature Med.11, 1135–1136 (2005). ArticleCASPubMed Google Scholar
Grinkevich, V., Issaeva, N., Hossain, S., Pramanik, A. & Selivanova, G. Reply to 'NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro'. Nature Med.11, 1136–1137 (2005). ArticleCAS Google Scholar
Lasne, C., Lowy, R. & Venegas, W. In vitro induction of sister-chromatid exchanges after G0 exposure of human lymphocytes to five naphthofurans. Mutagenesis4, 27–30 (1989). ArticleCASPubMed Google Scholar
Touati, E., Krin, E., Quillardet, P. & Hofnung, M. 7-Methoxy-2-nitronaphtho[2,1-b]furan (R7000)-induced mutation spectrum in the lacI gene of Escherichia coli: influence of SOS mutagenesis. Carcinogenesis17, 2543–2550 (1996). ArticleCASPubMed Google Scholar
Quillardet, P., Boscus, D., Touati, E. & Hofnung, M. DNA damage induced in vivo by 7-methoxy-2-nitronaphtho[2,1-b]-furan (R7000) in the lacI gene of Escherichia coli. Mutat. Res.422, 237–245 (1998). ArticleCASPubMed Google Scholar
Quillardet, P., Michel, V., Arrault, X., Hofnung, M. & Touati, E. Mutagenic properties of a nitrofuran, 7-methoxy-2-nitronaphtho[2,1-b]furan (R7000), in lacI transgenic mice. Mutat. Res.470, 177–188 (2000). ArticleCASPubMed Google Scholar
Bossy-Wetzel, E., Schwarzenbacher, R. & Lipton, S. A. Molecular pathways to neurodegeneration. Nature Med.10 (Suppl.), S2–S9 (2004). ArticlePubMedCAS Google Scholar
Dawson, T. M. & Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science302, 819–822 (2003). ArticleCASPubMed Google Scholar
Farrer, M. J. Genetics of Parkinson disease: paradigm shifts and future prospects. Nature Rev. Genet.7, 306–318 (2006). ArticleCASPubMed Google Scholar
Giasson, B. I. & Lee, V. M. Are ubiquitination pathways central to Parkinson's disease? Cell114, 1–8 (2003). ArticleCASPubMed Google Scholar
Nutt, J. G. & Wooten, G. F. Clinical practice. Diagnosis and initial management of Parkinson's disease. N. Engl. J. Med.353, 1021–1027 (2005). ArticleCASPubMed Google Scholar
Tolosa, E., Wenning, G. & Poewe, W. The diagnosis of Parkinson's disease. Lancet Neurol.5, 75–86 (2006). ArticlePubMed Google Scholar
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392, 605–608 (1998). The authors identified an autosomal recessive juvenile parkinsonism gene located on chromosome 6 as the parkin RING-finger ubiquitin ligase and multiple classes of deletion mutants in the gene. Subsequent studies identified further point mutations which also occur in the RING-finger domain, linking its E3 activity to disease. ArticleCASPubMed Google Scholar
Pesah, Y. et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development131, 2183–2194 (2004). ArticleCASPubMed Google Scholar
Greene, J. C., Whitworth, A. J., Andrews, L. A., Parker, T. J. & Pallanck, L. J. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet.14, 799–811 (2005). ArticleCASPubMed Google Scholar
Haywood, A. F. & Staveley, B. E. Parkin counteracts symptoms in a Drosophila model of Parkinson's disease. BMC Neurosci.5, 14 (2004). ArticlePubMedPubMed Central Google Scholar
Yamada, M., Mizuno, Y. & Mochizuki, H. Parkin gene therapy for α-synucleinopathy: a rat model of Parkinson's disease. Hum. Gene Ther.16, 262–270 (2005). ArticleCASPubMed Google Scholar
Shimura, H. et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science293, 263–269 (2001). ArticleCASPubMed Google Scholar
Ang, X. L. & Wade Harper, J. (2001). SCF-mediated protein degradation and cell cycle control. Oncogene24, 2860–2870 (2001). ArticleCAS Google Scholar
Jin, J. et al. (2001). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev.18, 2573–2580 (2001). ArticleCAS Google Scholar
Latres, E., Chiaur, D. S. & Pagano, M. (2001). The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene18, 849–854 (2001). ArticleCAS Google Scholar
Wu, G. et al. Structure of a β-TrCP1–Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCF(β-TrCP1) ubiquitin ligase. Mol. Cell11, 1445–1456 (2003). ArticleCASPubMed Google Scholar
Read, M. A. et al. Nedd8 modification of cul-1 activates SCF(β(TrCP))-dependent ubiquitination of IκBα. Mol. Cell Biol.20, 2326–2333 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis & female sterility in p27(Kip1)-deficient mice. Cell85, 733–744 (1996). ArticleCASPubMed Google Scholar
Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell85, 721–732 (1996). ArticleCASPubMed Google Scholar
Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia & pituitary tumors. Cell85, 707–720 (1996). CASPubMed Google Scholar
Bhattacharya, S. et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene22, 2443–2451 (2003). ArticleCASPubMed Google Scholar
Tedesco, D., Lukas, J. & Reed, S. I. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev.16, 2946–2957 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bornstein, G. et al. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J. Biol. Chem.278, 25752–25757 (2003). ArticleCASPubMed Google Scholar
Kamura, T. et al. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc. Natl Acad. Sci. USA100, 10231–10236 (2003). ArticleCASPubMedPubMed Central Google Scholar
Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA102, 1649–1654 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shim, E. H. et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia & low-grade carcinoma in the mouse prostate. Cancer Res.63, 1583–1588 (2003). CASPubMed Google Scholar
Piva, R. et al. In vivo interference with Skp1 function leads to genetic instability and neoplastic transformation. Mol. Cell Biol.22, 8375–8387 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sumimoto, H. et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther.12, 95–100 (2005). ArticleCASPubMed Google Scholar
Kudo, Y. et al. Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation. Mol. Cancer Ther.4, 471–476 (2005). ArticleCASPubMed Google Scholar
Jiang, F., Caraway, N. P., Li, R. & Katz, R. L. RNA silencing of S-phase kinase-interacting protein 2 inhibits proliferation and centrosome amplification in lung cancer cells. Oncogene24, 3409–3418 (2005). ArticleCASPubMed Google Scholar
Katagiri, Y., Hozumi, Y. & Kondo, S. Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J. Dermatol Sci.42, 215–224 (2006). ArticleCASPubMed Google Scholar
Hao, B. et al. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol. Cell20, 9–19 (2005). ArticleCASPubMed Google Scholar
Winston, J. T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev.13, 270–283 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature428, 77–81 (2004). ArticleCASPubMed Google Scholar
Kim, W. & Kaelin, W. G., Jr. The von Hippel-Lindau tumor suppressor protein: new insights into oxygen sensing and cancer. Curr. Opin. Genet. Dev.13, 55–60 (2003). ArticleCASPubMed Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). ArticleCASPubMed Google Scholar
Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nature Cell Biol.2, 423–427 (2000). ArticleCASPubMed Google Scholar
Stebbins, C. E., Kaelin, W. G., Jr. & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science284, 455–461 (1999). ArticleCASPubMed Google Scholar
Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 α by pVHL. Nature417, 975–978 (2002). ArticleCASPubMed Google Scholar
Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 α-degradative pathway. J. Biol. Chem.277, 29936–29944 (2002). ArticleCASPubMed Google Scholar
Isaacs, J. S., Xu, W. & Neckers, L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell3, 213–217 (2003). ArticleCASPubMed Google Scholar
Aravind, L. & Koonin, E. V. The U box is a modified RING finger- a common domain in ubiquitination. Curr. Biol.10, R132–R134 (2000). ArticleCASPubMed Google Scholar
Ohi, M. D., Vander Kooi, C. W., Rosenberg, J. A., Chazin, W. J. & Gould, K. L. (2003). Structural insights into the U-box, a domain associated with multi-ubiquitination. Nature Struct. Biol.10, 250–255. ArticleCASPubMed Google Scholar
Hatakeyama, S. & Nakayama, K. I. U-box proteins as a new family of ubiquitin ligases. Biochem. Biophys. Res. Commun.302, 635–645 (2003). ArticleCASPubMed Google Scholar
Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA99, 12847–12852 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhou, P. et al. ErbB2 degradation mediated by the co-chaperone protein CHIP. J. Biol. Chem.278, 13829–13837 (2003). ArticleCASPubMed Google Scholar
Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol.3, 100–105 (2001). ArticleCASPubMed Google Scholar
Imai, Y. et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease & enhances its ubiquitin ligase activity. Mol. Cell10, 55–67 (2002). ArticleCASPubMed Google Scholar
Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA92, 2563–2567 (1995). ArticleCASPubMedPubMed Central Google Scholar
Anglesio, M. S. et al. Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms' tumor versus normal kidney. Hum. Mol. Genet.13, 2061–2074 (2004). ArticleCASPubMed Google Scholar
Talis, A. L., Huibregtse, J. M. & Howley, P. M. The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J. Biol. Chem.273, 6439–6445 (1998). ArticleCASPubMed Google Scholar
Cooper, E. M., Hudson, A. W., Amos, J., Wagstaff, J. & Howley, P. M. Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein. J. Biol. Chem.279, 41208–41217 (2004). ArticleCASPubMed Google Scholar
Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet.15, 70–73 (1997). ArticleCASPubMed Google Scholar
Verdecia, M. A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell11, 249–259 (2003). ArticleCASPubMed Google Scholar
Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell75, 495–505 (1993). The first demonstration of a HECT-domain ubiquitin ligase and its direct involvement in ubiquitin transfer through a thiol-ester intermediate. Subsequent work (see Reference138) demonstrated that there is a large family of HECT-domain containing proteins that all probably act to promote ubiquitin transfer through a similar mechanism. ArticleCASPubMed Google Scholar
Huibregtse, J. M., Scheffner, M. & Howley, P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J.10, 4129–4135 (1991). ArticleCASPubMedPubMed Central Google Scholar
Rolfe, M. et al. Reconstitution of p53-ubiquitinylation reactions from purified components: the role of human ubiquitin-conjugating enzyme UBC4 and E6-associated protein (E6AP). Proc. Natl Acad. Sci. USA92, 3264–3268 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gross-Mesilaty, S. et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc. Natl Acad. Sci. USA95, 8058–8063 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gewin, L., Myers, H., Kiyono, T. & Galloway, D. A. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev.18, 2269–2282 (2004). ArticleCASPubMedPubMed Central Google Scholar
Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet.15, 74–77 (1997). ArticleCASPubMed Google Scholar
Buntinx, I. M. et al. Clinical profile of Angelman syndrome at different ages. Am. J. Med. Genet.56, 176–183 (1995). ArticleCASPubMed Google Scholar
Duensing, S. & Munger, K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int. J. Cancer109, 157–162 (2004). ArticleCASPubMed Google Scholar
Kim, Y., Cairns, M. J., Marouga, R. & Sun, L. Q. E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes. Cancer Gene Ther.10, 707–716 (2003). ArticleCASPubMed Google Scholar
Foster, S. A. & Phelps, W. C. Zn(2+) fingers and cervical cancer. J. Natl Cancer Inst.91, 1180–1181 (1999). ArticleCASPubMed Google Scholar
Harper, D. M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367, 1247–1255 (2006). ArticleCASPubMed Google Scholar
Mayeaux, E. J., Jr. Harnessing the power of prevention: human papillomavirus vaccines. Curr. Opin. Obstet. Gynecol.18 (Suppl. 1), S15–S21 (2006). ArticlePubMed Google Scholar
Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA98, 8554–8559 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sakamoto, K. M. et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell Proteomics2, 1350–1358 (2003). ArticleCASPubMed Google Scholar
Zhou, P., Bogacki, R., McReynolds, L. & Howley, P. M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell6, 751–756 (2000). ArticleCASPubMed Google Scholar
Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science298, 611–615 (2002). ArticleCASPubMed Google Scholar
Goldenberg, S. J. et al. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell119, 517–528 (2004). ArticleCASPubMed Google Scholar
Zheng, J. et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell10, 1519–1526 (2002). ArticleCASPubMed Google Scholar
Cope, G. A. & Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell114, 663–671 (2003). ArticleCASPubMed Google Scholar
Ambroggio, X. I., Rees, D. C. & Deshaies, R. J. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol.2, E2 (2004). ArticleCASPubMed Google Scholar
Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science298, 608–611 (2002). This study identified the machinery required to remove NEDD8 from cullins and demonstrated an important role for NEDD8-removal for the biological activity of SCF complexes. ArticleCASPubMed Google Scholar
Verma, R., Oania, R., Graumann, J. & Deshaies, R. J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin–proteasome system. Cell118, 99–110 (2004). ArticleCASPubMed Google Scholar
Verma, R. et al. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science306, 117–120 (2004). ArticleCASPubMed Google Scholar
Schwartz, D. C. & Hochstrasser, M. (2003). A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci.28, 321–328. ArticleCASPubMed Google Scholar