Neurogenic radial glia in the outer subventricular zone of human neocortex (original) (raw)
References
Smart, I. H. Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J. Anat.116, 67–91 (1973) ADSCASPubMedPubMed Central Google Scholar
Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000) CASPubMed Google Scholar
Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron31, 727–741 (2001) ArticleCASPubMed Google Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001) ArticleADSCASPubMed Google Scholar
Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA101, 3196–3201 (2004) ArticleADSCASPubMedPubMed Central Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci.7, 136–144 (2004) ArticleCASPubMed Google Scholar
Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex12, 37–53 (2002) ArticlePubMed Google Scholar
Zecevic, N., Chen, Y. & Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol.491, 109–122 (2005) ArticlePubMedPubMed Central Google Scholar
Fish, J. L., Dehay, C., Kennedy, H. & Huttner, W. B. Making bigger brains-the evolution of neural-progenitor-cell division. J. Cell Sci.121, 2783–2793 (2008) ArticleCASPubMed Google Scholar
Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science183, 425–427 (1974) ArticleADSCASPubMed Google Scholar
Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron47, 353–364 (2005) ArticleCASPubMedPubMed Central Google Scholar
Bayatti, N. et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb. Cortex18, 1536–1548 (2008) ArticlePubMed Google Scholar
Mo, Z. & Zecevic, N. Is Pax6 critical for neurogenesis in the human fetal brain? Cereb. Cortex18, 1455–1465 (2008) ArticlePubMed Google Scholar
Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron21, 1031–1044 (1998) ArticlePubMed Google Scholar
Haas, K., Sin, W. C., Javaherian, A., Li, Z. & Cline, H. T. Single-cell electroporation for gene transfer in vivo . Neuron29, 583–591 (2001) ArticleCASPubMed Google Scholar
Weissman, T., Noctor, S. C., Clinton, B. K., Honig, L. S. & Kriegstein, A. R. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb. Cortex13, 550–559 (2003) ArticlePubMed Google Scholar
Rakic, P. Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex13, 541–549 (2003) ArticlePubMed Google Scholar
Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O. & Lichtman, J. W. Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron27, 219–225 (2000) ArticleCASPubMed Google Scholar
Chenn, A., Zhang, Y. A., Chang, B. T. & McConnell, S. K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci.11, 183–193 (1998) ArticleCASPubMed Google Scholar
Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature417, 645–649 (2002) ArticleADSCASPubMed Google Scholar
Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci.25, 247–251 (2005) ArticleCASPubMedPubMed Central Google Scholar
Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex19, 2439–2450 (2009) ArticlePubMedPubMed Central Google Scholar
Sessa, A., Mao, C. A., Hadjantonakis, A. K., Klein, W. H. & Broccoli, V. TBR2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron60, 56–69 (2008) ArticleCASPubMedPubMed Central Google Scholar
Petanjek, Z., Berger, B. & Esclapez, M. Origins of cortical GABAergic neurons in the cynomolgus monkey. Cereb. Cortex19, 249–262 (2009) ArticlePubMed Google Scholar
Götz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol.6, 777–788 (2005) Article Google Scholar
Gaiano, N., Nye, J. S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron26, 395–404 (2000) ArticleCASPubMed Google Scholar
Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in Notch signaling regulate maintenance of neural progenitors. Neuron58, 52–64 (2008) ArticleCASPubMed Google Scholar
Abdel-Mannan, O., Cheung, A. F. & Molnar, Z. Evolution of cortical neurogenesis. Brain Res. Bull.75, 398–404 (2008) ArticleCASPubMed Google Scholar
Rakic, P. & Sidman, R. L. Supravital DNA synthesis in the developing human and mouse brain. J. Neuropathol. Exp. Neurol.27, 240–276 (1968) Article Google Scholar
Choi, B. H. Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: a light and electron microscopic immunoperoxidase study. J. Neuropathol. Exp. Neurol.45, 408–418 (1986) ArticleCASPubMed Google Scholar
Schmechel, D. E. & Rakic, P. Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature277, 303–305 (1979) ArticleADSCASPubMed Google Scholar
Schmechel, D. E. & Rakic, P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. (Berl.)156, 115–152 (1979) ArticleCAS Google Scholar
Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Rev. Neurosci.7, 883–890 (2006) ArticleCAS Google Scholar
Baek, J. H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T. & Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development133, 2467–2476 (2006) ArticleCASPubMed Google Scholar