A continuum model for tumour suppression (original) (raw)
Nowell, P. C. & Hungerford, D. A. Chromosome studies on normal and leukemic human leukocytes. J. Natl Cancer Inst.25, 85–109 (1960) CASPubMed Google Scholar
Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature243, 290–293 (1973) ArticleADSCASPubMed Google Scholar
Rowley, J. D., Golomb, H. M. & Dougherty, C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet309, 549–550 (1977) Article Google Scholar
Heisterkamp, N. et al. Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature306, 239–242 (1983) ArticleADSCASPubMed Google Scholar
Pandolfi, P. P. et al. Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene6, 1285–1292 (1991) CASPubMed Google Scholar
Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature260, 170–173 (1976) ArticleADSCASPubMed Google Scholar
Oppermann, H., Levinson, A. D., Varmus, H. E., Levintow, L. & Bishop, J. M. Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc. Natl Acad. Sci. USA76, 1804–1808 (1979) ArticleADSCASPubMedPubMed Central Google Scholar
Harris, H. The analysis of malignancy by cell fusion: the position in 1988. Cancer Res.48, 3302–3306 (1988) CASPubMed Google Scholar
Knudson, A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA68, 820–823 (1971)The original statistical analysis of hereditary retinoblastoma that led to the two-hit hypothesis. ArticleADSPubMedPubMed Central Google Scholar
Lee, W. H. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science235, 1394–1399 (1987) ArticleADSCASPubMed Google Scholar
Fung, Y. K. et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science236, 1657–1661 (1987) ArticleADSCASPubMed Google Scholar
Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature323, 643–646 (1986)Building on several years of work by many laboratories to localize the gene responsible for hereditary retinoblastoma, this study is the first to identify and clone the responsible gene,RB1, and to show that it is altered in retinoblastoma tumours. ArticleADSCASPubMed Google Scholar
Sparkes, R. S. et al. Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science219, 971–973 (1983) ArticleADSCASPubMed Google Scholar
Benedict, W. F. et al. Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science219, 973–975 (1983) ArticleADSCASPubMed Google Scholar
Dryja, T. P. et al. Homozygosity of chromosome 13 in retinoblastoma. N. Engl. J. Med.310, 550–553 (1984) ArticleCASPubMed Google Scholar
Cavenee, W. K. et al. Genetic origin of mutations predisposing to retinoblastoma. Science228, 501–503 (1985) ArticleADSCASPubMed Google Scholar
Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature305, 779–784 (1983) ArticleADSCASPubMed Google Scholar
Baker, S. J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science244, 217–221 (1989) ArticleADSCASPubMed Google Scholar
Levy, D. B. et al. Inactivation of both APC alleles in human and mouse tumors. Cancer Res.54, 5953–5958 (1994) CASPubMed Google Scholar
Smith, S. A., Easton, D. F., Evans, D. G. & Ponder, B. A. Allele losses in the region 17q12–21 in familial breast and ovarian cancer involve the wild-type chromosome. Nature Genet.2, 128–131 (1992) ArticleCASPubMed Google Scholar
Gudmundsson, J. et al. Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12–q13. Cancer Res.55, 4830–4832 (1995) CASPubMed Google Scholar
Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med.10, 789–799 (2004) ArticleCASPubMed Google Scholar
Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet.9, 138–141 (1993) ArticleCASPubMed Google Scholar
Hagstrom, S. A. & Dryja, T. P. Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity in retinoblastomas. Proc. Natl Acad. Sci. USA96, 2952–2957 (1999) ArticleADSCASPubMedPubMed Central Google Scholar
Fisher, E. & Scambler, P. Human haploinsufficiency – one for sorrow, two for joy. Nature Genet.7, 5–7 (1994) ArticleCASPubMed Google Scholar
Venkatachalam, S. et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J.17, 4657–4667 (1998) ArticleCASPubMedPubMed Central Google Scholar
Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature362, 849–852 (1993) ArticleADSCASPubMed Google Scholar
Lynch, C. J. & Milner, J. Loss of one p53 allele results in four-fold reduction of p53 mRNA and protein: a basis for p53 haplo-insufficiency. Oncogene25, 3463–3470 (2006) ArticleCASPubMed Google Scholar
Bellacosa, A. et al. Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations. Cancer Prev. Res.3, 48–61 (2010) ArticleCAS Google Scholar
Burga, L. N. et al. Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers. Cancer Res.69, 1273–1278 (2009) ArticleCASPubMedPubMed Central Google Scholar
Proia, T. A. et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell8, 149–163 (2011) ArticleCASPubMedPubMed Central Google Scholar
Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature446, 758–764 (2007) ArticleADSCASPubMed Google Scholar
Sancho, R. et al. F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor. Gastroenterology139, 929–941 (2010) ArticleCASPubMed Google Scholar
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature436, 725–730 (2005)This paper defined the paradigm of obligate haploinsufficiency of thePTENgene by demonstrating that homozygous loss ofPTENis less tumorigenic than heterozygous loss ofPTENowing to the induction of a p53-dependent senescence response. ArticleADSCASPubMedPubMed Central Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006) ArticleADSCASPubMed Google Scholar
Lee, J. Y. et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell7, 593–605 (2010)In this work, an analysis of the contextual dependencies of leukaemia induced by loss ofPTENshows that loss ofPTENcooperates with p53 mutation in the haematopoietic compartment. ArticleCASPubMedPubMed Central Google Scholar
Lambertz, I. et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo . Cell Death Differ.17, 633–641 (2010) ArticleCASPubMed Google Scholar
Bric, A. et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell16, 324–335 (2009) ArticleCASPubMedPubMed Central Google Scholar
Sportoletti, P. et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood111, 3859–3862 (2008) ArticleCASPubMedPubMed Central Google Scholar
Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature437, 147–153 (2005) ArticleADSCASPubMed Google Scholar
Zhou, X. Z. et al. The telomerase inhibitor PinX1 is a major haploinsufficient tumor suppressor essential for chromosome stability in mice. J. Clin. Invest.121, 1266–1282 (2011) ArticleCASPubMedPubMed Central Google Scholar
Alimonti, A. et al. Subtle variations in Pten dose determine cancer susceptibility. Nature Genet.42, 454–458 (2010)A subtle reduction inPtenexpression is shown to induce cancer in mice in a tissue-specific manner, demonstrating that very small changes in expression can promote cancer, and thereby defining the phenomenon of quasi-insufficiency. ArticleCASPubMed Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a . Cell88, 593–602 (1997)An example of the complex dosage effects of oncogenes, this paper demonstrates that aberrantly high expression of an oncogene can promote senescence, rather than proliferation. ArticleCASPubMed Google Scholar
Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell69, 119–128 (1992) ArticleCASPubMed Google Scholar
Takano, T. et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol.23, 6829–6837 (2005) ArticleCASPubMed Google Scholar
Huse, J. T. et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo . Genes Dev.23, 1327–1337 (2009) ArticleCASPubMedPubMed Central Google Scholar
Poliseno, L. et al. Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic _PTEN_-targeting intron that cooperates with its host gene MCM7 in transformation. Sci. Signal.3, ra29 (2010) ArticlePubMedPubMed Central Google Scholar
Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature465, 1033–1038 (2010)Identification of a coding-independent function of mRNAs whereby they act as ceRNAs that ‘sponge’ miRNAs to regulate distinct mRNAsin trans. ArticleADSCASPubMedPubMed Central Google Scholar
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell //10.1016/j.cell.2011.07.014 (2011)
Teresi, R. E., Planchon, S. M., Waite, K. A. & Eng, C. Regulation of the PTEN promoter by statins and SREBP. Hum. Mol. Genet.17, 919–928 (2008) ArticleCASPubMed Google Scholar
Lin, H. K. et al. Skp2 targeting suppresses tumorigenesis by _Arf-p53_-independent cellular senescence. Nature464, 374–379 (2008) ArticleADS Google Scholar
Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin.60, 277–300 (2010) ArticlePubMed Google Scholar
Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science285, 2122–2125 (1999) ArticleCASPubMed Google Scholar
Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol.8, 1169–1178 (1998) ArticleCASPubMed Google Scholar
Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96, 1563–1568 (1999) ArticleADSCASPubMedPubMed Central Google Scholar
Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet.19, 348–355 (1998) ArticleCASPubMed Google Scholar
Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest.120, 681–693 (2010) ArticleCASPubMedPubMed Central Google Scholar
Daikoku, T. et al. Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res.68, 5619–5627 (2008) ArticleCASPubMedPubMed Central Google Scholar
Li, G. et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development129, 4159–4170 (2002) CASPubMed Google Scholar