Wan, P.T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell116, 855–867 (2004). ArticleCASPubMed Google Scholar
Santarosa, M. & Ashworth, A. Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim. Biophys. Acta1654, 105–122 (2004). CASPubMed Google Scholar
Nowell, P.C. Tumor progression: a brief historical perspective. Semin. Cancer Biol.12, 261–266 (2002). ArticleCASPubMed Google Scholar
Maley, C.C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett's esophagus. Cancer Res.64, 3414–3427 (2004). ArticleCASPubMed Google Scholar
Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell108, 135–144 (2002). ArticleCASPubMed Google Scholar
Sherr, C.J. Cancer cell cycles revisited. Cancer Res.60, 3689–3695 (2000). CASPubMed Google Scholar
Ortega, S., Malumbres, M. & Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta1602, 73–87 (2002). CASPubMed Google Scholar
Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nat. Rev. Cancer2, 910–917 (2002). ArticleCASPubMed Google Scholar
Ichimura, K. et al. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res.60, 417–424 (2000). CASPubMed Google Scholar
Klein, G. Perspectives in studies of human tumor viruses. Front. Biosci.7, d268–d274 (2002). ArticleCASPubMed Google Scholar
Munger, K. & Howley, P.M. Human papillomavirus immortalization and transformation functions. Virus Res.89, 213–228 (2002). ArticleCASPubMed Google Scholar
Komarova, N.L., Sengupta, A. & Nowak, M.A. Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J. Theor. Biol.223, 433–450 (2003). ArticleCASPubMed Google Scholar
Rowley, J.D. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet.32, 495–519 (1998). ArticleCASPubMed Google Scholar
Verheul, H.M., Voest, E.E. & Schlingemann, R.O. Are tumours angiogenesis-dependent? J. Pathol.202, 5–13 (2004). ArticleCASPubMed Google Scholar
Tlsty, T.D. & Hein, P.W. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr. Opin. Genet. Dev.11, 54–59 (2001). ArticleCASPubMed Google Scholar
Fata, J.E., Werb, Z. & Bissell, M.J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res.6, 1–11 (2004). ArticleCASPubMed Google Scholar
Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer2, 727–739 (2002). ArticleCASPubMed Google Scholar
Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol.29, 15–18 (2002). ArticleCASPubMed Google Scholar
Ferrara, N., Hillan, K.J., Gerber, H.P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov.3, 391–400 (2004). ArticleCASPubMed Google Scholar
Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W.G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell1, 237–246 (2002). ArticleCASPubMed Google Scholar
Rajagopalan, H., Nowak, M.A., Vogelstein, B. & Lengauer, C. The significance of unstable chromosomes in colorectal cancer. Nat. Rev. Cancer3, 695–701 (2003). ArticleCASPubMed Google Scholar
Sieber, O.M., Heinimann, K. & Tomlinson, I.P. Genomic instability—the engine of tumorigenesis? Nat. Rev. Cancer3, 701–708 (2003). ArticleCASPubMed Google Scholar
Wang, T.L. et al. Prevalence of somatic alterations in the colorectal cancer cell genome. Proc. Natl. Acad. Sci. USA99, 3076–3080 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ArticleCASPubMed Google Scholar
Duesberg, P. & Li, R. Multistep carcinogenesis: a chain reaction of aneuploidizations. Cell Cycle2, 202–210 (2003). ArticleCASPubMed Google Scholar
Albertson, D.G. & Pinkel, D. Genomic microarrays in human genetic disease and cancer. Hum. Mol. Genet.12 (spec. no. 2), R145–R152 (2003). ArticleCASPubMed Google Scholar
Shiloh, Y. & Kastan, M.B. ATM: genome stability, neuronal development, and cancer cross paths. Adv. Cancer Res.83, 209–254 (2001). ArticleCASPubMed Google Scholar
Maser, R.S. & DePinho, R.A. Connecting chromosomes, crisis, and cancer. Science297, 565–569 (2002). ArticleCASPubMed Google Scholar
Pihan, G. & Doxsey, S.J. Mutations and aneuploidy: co-conspirators in cancer? Cancer Cell4, 89–94 (2003). ArticleCASPubMed Google Scholar
Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature428, 77–81 (2004). ArticleCASPubMed Google Scholar
Shay, J.W. & Roninson, I.B. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene23, 2919–2933 (2004). ArticleCASPubMed Google Scholar
Chambers, A.F., Groom, A.C. & MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer2, 563–572 (2002). ArticleCASPubMed Google Scholar
Fidler, I.J. Critical determinants of metastasis. Semin. Cancer Biol.12, 89–96 (2002). ArticlePubMed Google Scholar
Hruban, R.H., Goggins, M., Parsons, J. & Kern, S.E. Progression model for pancreatic cancer. Clin. Cancer Res.6, 2969–2972 (2000). CASPubMed Google Scholar
Aguirre, A.J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev.17, 3112–3126 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jen, J. et al. Molecular determinants of dysplasia in colorectal lesions. Cancer Res.54, 5523–5526 (1994). CASPubMed Google Scholar
Pretlow, T.P. Aberrant crypt foci and K-ras mutations: earliest recognized players or innocent bystanders in colon carcinogenesis? Gastroenterology108, 600–603 (1995). ArticleCASPubMed Google Scholar
Sieben, N.L. et al. In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J. Pathol.202, 336–340 (2004). ArticleCASPubMed Google Scholar
Kinzler, K.W. & Vogelstein, B. Colorectal Tumors. in The Genetic Basis of Human Cancer (eds. Vogelstein, B. & Kinzler, K.W.) 565–587 (McGraw-Hill, New York, 1998). Google Scholar
Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Zhang, Z. et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat. Genet.29, 25–33 (2001). ArticleCASPubMed Google Scholar
Diaz, R. et al. The N-ras proto-oncogene can suppress the malignant phenotype in the presence or absence of its oncogene. Cancer Res.62, 4514–4518 (2002). CASPubMed Google Scholar
Bronner-Fraser, M. Development. Making sense of the sensory lineage. Science303, 966–968 (2004). ArticleCASPubMed Google Scholar
Fishel, R. & Wilson, T. MutS homologs in mammalian cells. Curr. Opin. Genet. Dev.7, 105–113 (1997). ArticleCASPubMed Google Scholar
Lynch, H.T. & de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med.348, 919–932 (2003). ArticleCASPubMed Google Scholar
Yamamoto, H., Imai, K. & Perucho, M. Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J. Gastroenterol.37, 153–163 (2002). ArticleCASPubMed Google Scholar
Honchel, R., Halling, K.C. & Thibodeau, S.N. Genomic instability in neoplasia. Semin. Cell Biol.6, 45–52 (1995). ArticleCASPubMed Google Scholar
Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet.21, 33–37 (1999). ArticleCASPubMed Google Scholar
Polyak, K. & Riggins, G.J. Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J. Clin. Oncol.19, 2948–2958 (2001). ArticleCASPubMed Google Scholar
Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3, 415–428 (2002). ArticleCASPubMed Google Scholar
Feinberg, A.P. & Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer4, 143–153 (2004). ArticleCASPubMed Google Scholar
Collins, F.S., Green, E.D., Guttmacher, A.E. & Guyer, M.S. A vision for the future of genomics research. Nature422, 835–847 (2003). ArticleCASPubMed Google Scholar
Schadt, E.E., Monks, S.A. & Friend, S.H. A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem. Soc. Trans.31, 437–443 (2003). ArticleCASPubMed Google Scholar
Paddison, P.J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature428, 427–431 (2004). ArticleCASPubMed Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCASPubMed Google Scholar
Rosenblatt, K.P. et al. Serum proteomics in cancer diagnosis and management. Annu. Rev. Med.55, 97–112 (2004). ArticleCASPubMed Google Scholar
Luo, J., Isaacs, W.B., Trent, J.M. & Duggan, D.J. Looking beyond morphology: cancer gene expression profiling using DNA microarrays. Cancer Invest.21, 937–949 (2003). ArticleCASPubMed Google Scholar
Ma, X.J. et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell5, 607–616 (2004). ArticleCASPubMed Google Scholar
Masayesva, B.G. et al. Gene expression alterations over large chromosomal regions in cancers include multiple genes unrelated to malignant progression. Proc. Natl. Acad. Sci. USA101, 8715–8720 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stewart, S.A. & Weinberg, R.A. Senescence: does it all happen at the ends? Oncogene21, 627–630 (2002). ArticleCASPubMed Google Scholar
Feldser, D.M., Hackett, J.A. & Greider, C.W. Telomere dysfunction and the initiation of genome instability. Nat. Rev. Cancer3, 623–627 (2003). ArticleCASPubMed Google Scholar
Chan, S.R. & Blackburn, E.H. Telomeres and telomerase. Phil. Trans. R. Soc. Lond. B359, 109–121 (2004). ArticleCAS Google Scholar
Miklos, G.L. & Maleszka, R. Microarray reality checks in the context of a complex disease. Nat. Biotechnol.22, 615–621 (2004). ArticleCASPubMed Google Scholar
Hope, K.J., Jin, L. & Dick, J.E. Human acute myeloid leukemia stem cells. Arch. Med. Res.34, 507–514 (2003). ArticleCASPubMed Google Scholar
Berking, C. & Herlyn, M. Human skin reconstruct models: a new application for studies of melanocyte and melanoma biology. Histol. Histopathol.16, 669–674 (2001). CASPubMed Google Scholar
Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA101, 4966–4971 (2004). ArticleCASPubMedPubMed Central Google Scholar
Frei, E.I. & Eder, J.P. Principles of dose, schedule, and combination Therapy. in Cancer Medicine (eds. Kufe, D.W. et al.) 669–677 (B.C. Decker, Inc., Hamilton, Ontario, 2003). Google Scholar
Pegram, M.D., Konecny, G. & Slamon, D.J. The molecular and cellular biology of HER2/neu gene amplification/overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat. Res.103, 57–75 (2000). ArticleCASPubMed Google Scholar
Druker, B.J. et al. Chronic myelogenous leukemia. in Hematology 2001 (American Society of Hematology Education Program) 87–112 (American Society of Hematology, 2001). Google Scholar
Mechtersheimer, G. et al. Gastrointestinal stromal tumours and their response to treatment with the tyrosine kinase inhibitor imatinib. Virchows Arch.444, 108–118 (2004). ArticleCASPubMed Google Scholar
Langer, C.J. Emerging role of epidermal growth factor receptor inhibition in therapy for advanced malignancy: focus on NSCLC. Int. J. Radiat. Oncol. Biol. Phys.58, 991–1002 (2004). ArticleCASPubMed Google Scholar
Duensing, A., Heinrich, M.C., Fletcher, C.D. & Fletcher, J.A. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest.22, 106–116 (2004). ArticleCASPubMed Google Scholar
Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). ArticleCASPubMed Google Scholar
Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004). ArticleCASPubMed Google Scholar
Danial, N.N. & Korsmeyer, S.J. Cell death: critical control points. Cell116, 205–219 (2004). ArticleCASPubMed Google Scholar
Brown, J.M. & Wouters, B.G. Apoptosis: mediator or mode of cell killing by anticancer agents? Drug Resist. Updat.4, 135–136 (2001). ArticleCASPubMed Google Scholar
Weinstein, I.B. et al. Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin. Cancer Res.3, 2696–2702 (1997). CASPubMed Google Scholar
Nygren, P. & Larsson, R. Overview of the clinical efficacy of investigational anticancer drugs. J. Intern. Med.253, 46–75 (2003). ArticleCASPubMed Google Scholar
Shih, L.Y. et al. Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: a comparative analysis of 120 paired diagnostic and relapse bone marrow samples. Clin. Cancer Res.10, 1326–1332 (2004). ArticleCASPubMed Google Scholar
Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colon cancer. Cell87, 159–170 (1996). ArticleCASPubMed Google Scholar
Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med.9, 123–128 (2003). ArticleCASPubMed Google Scholar
Gschwind, A., Fischer, O.M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer4, 361–370 (2004). ArticleCASPubMed Google Scholar
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer3, 11–22 (2003). ArticleCASPubMed Google Scholar
Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer1, 222–231 (2001). ArticleCASPubMed Google Scholar
Giles, R.H., van Es, J.H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta1653, 1–24 (2003). CASPubMed Google Scholar
Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell113, 685–700 (2003). ArticleCASPubMed Google Scholar
Ruiz i Altaba. A., Stecca, B. & Sanchez, P. Hedgehog–Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett.204, 145–157 (2004). ArticleCASPubMed Google Scholar
Eng, C., Kiuru, M., Fernandez, M.J. & Aaltonen, L.A. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat. Rev. Cancer3, 193–202 (2003). ArticleCASPubMed Google Scholar
Lum, L. & Beachy, P.A. The Hedgehog response network: sensors, switches, and routers. Science304, 1755–1759 (2004). ArticleCASPubMed Google Scholar
Brivanlou, A.H. & Darnell, J.E. Jr. Signal transduction and the control of gene expression. Science295, 813–818 (2002). ArticleCASPubMed Google Scholar
Vogelstein, B. & Kinzler, K.W. The Genetic Basis of Human Cancer (McGraw-Hill, Toronto, 2002). Google Scholar
Cameron, E.R. & Neil, J.C. The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene23, 4308–4314 (2004). ArticleCASPubMed Google Scholar