Crystal structure of nucleotide-free dynamin (original) (raw)
Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol.5, 133–147 (2004) ArticleCAS Google Scholar
van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophilashibire gene associated with vesicular traffic. Nature351, 411–414 (1991) ArticleADSCAS Google Scholar
Ferguson, S. M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science316, 570–574 (2007) ArticleADSCAS Google Scholar
Robinson, P. J. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature365, 163–166 (1993) ArticleADSCAS Google Scholar
Lu, J. et al. Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer. Neuron55, 874–889 (2007) ArticleCAS Google Scholar
Cook, T. A., Urrutia, R. & McNiven, M. A. Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc. Natl Acad. Sci. USA91, 644–648 (1994) ArticleADSCAS Google Scholar
Durieux, A. C. et al. Dynamin 2 and human diseases. J. Mol. Med.88, 339–350 (2010) Article Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001) ArticleADSCAS Google Scholar
Roux, A. et al. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006) ArticleADSCAS Google Scholar
Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature374, 190–192 (1995) ArticleADSCAS Google Scholar
Stowell, M. H. B. et al. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999) ArticleCAS Google Scholar
Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell135, 1276–1286 (2008) ArticleCAS Google Scholar
Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell135, 1263–1275 (2008) ArticleCAS Google Scholar
Timm, D. et al. Crystal structure of the pleckstrin homology domain from dynamin. Nature Struct. Biol.1, 782–788 (1994) ArticleCAS Google Scholar
Ferguson, K. M. et al. Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin. Cell79, 199–209 (1994) ArticleCAS Google Scholar
Niemann, H. H. et al. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J.20, 5813–5821 (2001) ArticleCAS Google Scholar
Reubold, T. F. et al. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl Acad. Sci. USA102, 13093–13098 (2005) ArticleADSCAS Google Scholar
Mears, J. A., Ray, P. & Hinshaw, J. E. A corkscrew model for dynamin constriction. Structure15, 1190–1202 (2007) ArticleCAS Google Scholar
Chappie, J. S. et al. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature465, 435–440 (2010) ArticleADSCAS Google Scholar
Gao, S. et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature465, 502–506 (2010) ArticleADSCAS Google Scholar
Ramachandran, R. et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J.26, 559–566 (2007) ArticleCAS Google Scholar
Chappie, J. S. et al. An intramolecular signaling element that modulates dynamin function in vitro and in vivo . Mol. Biol. Cell20, 3561–3571 (2009) ArticleCAS Google Scholar
Vallis, Y. et al. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol.9, 257–263 (1999) ArticleCAS Google Scholar
Zheng, J. et al. Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity. J. Mol. Biol.255, 14–21 (1996) ArticleCAS Google Scholar
Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J.15, 6241–6250 (1996) ArticleCAS Google Scholar
Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol.3, 922–926 (2001) ArticleCAS Google Scholar
Kenniston, J. A. & Lemmon, M. A. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO J.29, 3054–3067 (2010) ArticleCAS Google Scholar
Kochs, G. et al. Assay and functional analysis of dynamin-like Mx proteins. Methods Enzymol.404, 632–643 (2005) ArticleCAS Google Scholar
Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol.170, 1021–1027 (2005) ArticleCAS Google Scholar
Chang, C. R. et al. A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J. Biol. Chem.285, 32494–32503 (2010) ArticleCAS Google Scholar
Graham, M. E. et al. The in vivo phosphorylation sites of rat brain dynamin I. J. Biol. Chem.282, 14695–14707 (2007) ArticleCAS Google Scholar
Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnol.23, 94–101 (2004) Article Google Scholar
Low, H. H. & Lowe, J. Dynamin architecture–from monomer to polymer. Curr. Opin. Struct. Biol.20, 791–798 (2010) ArticleCAS Google Scholar
Wang, L. et al. Dynamin 2 mutants linked to centronuclear myopathies form abnormally stable polymers. J. Biol. Chem.285, 22753–22757 (2010) ArticleCAS Google Scholar
Low, H. H. et al. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell139, 1342–1352 (2009) Article Google Scholar
Byrnes, L. J. & Sondermann, H. Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc. Natl Acad. Sci. USA 10.1073/pnas.1012792108. (10 January 2011)
Bian, X. et al. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc. Natl Acad. Sci. USA108, 3976–3981 (2011) ArticleADSCAS Google Scholar
Klockow, B. et al. The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J.21, 240–250 (2002) ArticleCAS Google Scholar
Morlot, S. et al. Deformation of dynamin helices damped by membrane friction. Biophys. J.99, 3580–3588 (2010) ArticleADSCAS Google Scholar
Van Duyne, G. D. et al. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol.229, 105–124 (1993) ArticleCAS Google Scholar
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst.26, 795–800 (1993) ArticleCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst.40, 658–674 (2007) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Schröder, G. F., Levitt, M. & Brunger, A. T. Super-resolution biomolecular crystallography with low-resolution data. Nature464, 1218–1222 (2010) ArticleADS Google Scholar
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997) ArticleCAS Google Scholar
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
Laskowski, R. A. et al. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst.26, 283–291 (1993) ArticleCAS Google Scholar
DeLano, W. L. The PyMol Molecular Graphics System version 1.4.1 (Schrödinger, 2011) Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994) ArticleCAS Google Scholar
Fiser, A., Do, R. K. & Sali, A. Modeling of loops in protein structures. Protein Sci.9, 1753–1773 (2000) ArticleCAS Google Scholar
Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem.26, 1701–1718 (2005) ArticleCAS Google Scholar
Wang, J. M., Cieplak, P. & Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem.21, 1049–1074 (2000) ArticleCAS Google Scholar
Jorgensen, W. et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.79, 926–935 (1983) ArticleADSCAS Google Scholar
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys.103, 8577–8593 (1995) ArticleADSCAS Google Scholar
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an _N_·log(N) method for Ewald sums in large systems. J. Chem. Phys.98, 10089–10092 (1993) ArticleCAS Google Scholar
Hess, B. et al. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem.18, 1463–1472 (1997) ArticleCAS Google Scholar
Prinz, J. H. et al. Markov models of molecular kinetics: generation and validation. J. Chem. Phys.134, 174105 (2011) ArticleADS Google Scholar