Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci.32, 149–184 (2009) ArticleCAS Google Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001) ArticleADSCAS Google Scholar
Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron1, 635–647 (1988) ArticleCAS Google Scholar
Yu, Y. C., Bultje, R. S., Wang, X. & Shi, S. H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature458, 501–504 (2009) ArticleADSCAS Google Scholar
Peinado, A., Yuste, R. & Katz, L. C. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron10, 103–114 (1993) ArticleCAS Google Scholar
Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science257, 665–669 (1992) ArticleADSCAS Google Scholar
Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron14, 7–17 (1995) ArticleCAS Google Scholar
Willecke, K. et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem.383, 725–737 (2002) ArticleCAS Google Scholar
Elias, L. A., Wang, D. D. & Kriegstein, A. R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature448, 901–907 (2007) ArticleADSCAS Google Scholar
Nadarajah, B., Jones, A. M., Evans, W. H. & Parnavelas, J. G. Differential expression of connexins during neocortical development and neuronal circuit formation. J. Neurosci.17, 3096–3111 (1997) ArticleCAS Google Scholar
Connors, B. W. & Long, M. A. Electrical synapses in the mammalian brain. Annu. Rev. Neurosci.27, 393–418 (2004) ArticleCAS Google Scholar
Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron41, 495–511 (2004) ArticleCAS Google Scholar
Lo Turco, J. J. & Kriegstein, A. R. Clusters of coupled neuroblasts in embryonic neocortex. Science252, 563–566 (1991) ArticleADSCAS Google Scholar
Connors, B. W., Benardo, L. S. & Prince, D. A. Coupling between neurons of the developing rat neocortex. J. Neurosci.3, 773–782 (1983) ArticleCAS Google Scholar
Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature402, 75–79 (1999) ArticleADSCAS Google Scholar
Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature402, 72–75 (1999) ArticleADSCAS Google Scholar
Wang, Y., Barakat, A. & Zhou, H. Electrotonic coupling between pyramidal neurons in the neocortex. PLoS ONE5, e10253 (2010) ArticleADS Google Scholar
Pangratz-Fuehrer, S. & Hestrin, S. Synaptogenesis of electrical and GABAergic synapses of fast-spiking inhibitory neurons in the neocortex. J. Neurosci.31, 10767–10775 (2011) ArticleCAS Google Scholar
Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of cortical neurons. Nature Neurosci.1, 210–217 (1998) ArticleCAS Google Scholar
Hebb, D. O. The Organization of Behavior (Wiley, 1949) Google Scholar
Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science274, 1133–1138 (1996) ArticleADSCAS Google Scholar
Beahm, D. L. et al. Mutation of a conserved threonine in the third transmembrane helix of α- and β-connexins creates a dominant-negative closed gap junction channel. J. Biol. Chem.281, 7994–8009 (2006) ArticleCAS Google Scholar
Rouan, F. et al. _Trans_-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. J. Cell Sci.114, 2105–2113 (2001) CASPubMed Google Scholar
Personius, K. E. & Balice-Gordon, R. J. Loss of correlated motor neuron activity during synaptic competition at developing neuromuscular synapses. Neuron31, 395–408 (2001) ArticleCAS Google Scholar
Chuang, C. F., Vanhoven, M. K., Fetter, R. D., Verselis, V. K. & Bargmann, C. I. An innexin-dependent cell network establishes left–right neuronal asymmetry in C. elegans. Cell129, 787–799 (2007) ArticleCAS Google Scholar
Curtin, K. D., Zhang, Z. & Wyman, R. J. Gap junction proteins expressed during development are required for adult neural function in the Drosophila optic lamina. J. Neurosci.22, 7088–7096 (2002) ArticleCAS Google Scholar
Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S. & Luhmann, H. J. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature439, 79–83 (2006) ArticleADSCAS Google Scholar
Kandler, K. & Katz, L. C. Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J. Neurosci.18, 1419–1427 (1998) ArticleCAS Google Scholar
Du, Z. et al. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc. Natl Acad. Sci. USA103, 17396–17401 (2006) ArticleADSCAS Google Scholar
Holland, E. C., Hively, W. P., DePinho, R. A. & Varmus, H. E. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev.12, 3675–3685 (1998) ArticleCAS Google Scholar
Neyton, J. & Trautmann, A. Single-channel currents of an intercellular junction. Nature317, 331–335 (1985) ArticleADSCAS Google Scholar
Vos, B. P., Maex, R., Volny-Luraghi, A. & De Schutter, E. Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J. Neurosci.19, RC6 (1999) ArticleCAS Google Scholar