T-helper-1-cell cytokines drive cancer into senescence (original) (raw)

References

  1. Finn, O. J. Cancer immunology. N. Engl. J. Med. 358, 2704–2715 (2008)
    Article CAS Google Scholar
  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)
    Article CAS Google Scholar
  3. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011)
    Article ADS CAS Google Scholar
  4. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007)
    Article ADS CAS Google Scholar
  5. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996)
    Article CAS Google Scholar
  6. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005)
    Article ADS CAS Google Scholar
  7. Mocikat, R. et al. Natural killer cells activated by MHC class ILow targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561–569 (2003)
    Article CAS Google Scholar
  8. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998)
    Article CAS Google Scholar
  9. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007)
    CAS PubMed Google Scholar
  10. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010)
    Article CAS Google Scholar
  11. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011)
    Article ADS CAS Google Scholar
  12. Müller-Hermelink, N. et al. TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13, 507–518 (2008)
    Article Google Scholar
  13. Röcken, M. Early tumor dissemination, but late metastasis: insights into tumor dormancy. J. Clin. Invest. 120, 1800–1803 (2010)
    Article Google Scholar
  14. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005)
    Article ADS CAS Google Scholar
  15. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007)
    Article CAS Google Scholar
  16. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nature Rev. Cancer 10, 51–57 (2010)
    Article CAS Google Scholar
  17. Nardella, C., Clohessy, J. G., Alimonti, A. & Pandolfi, P. P. Pro-senescence therapy for cancer treatment. Nature Rev. Cancer 11, 503–511 (2011)
    Article CAS Google Scholar
  18. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999)
    Article ADS CAS Google Scholar
  19. Casanovas, O., Hager, J. H., Chun, M. G. & Hanahan, D. Incomplete inhibition of the Rb tumor suppressor pathway in the context of inactivated p53 is sufficient for pancreatic islet tumorigenesis. Oncogene 24, 6597–6604 (2005)
    Article CAS Google Scholar
  20. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008)
    Article CAS Google Scholar
  21. Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009)
    Article CAS Google Scholar
  22. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010)
    Article CAS Google Scholar
  23. Schwartzentruber, D. J. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011)
    Article CAS Google Scholar
  24. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006)
    Article ADS CAS Google Scholar
  25. Canova, C. et al. Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 European countries: the ARCAGE project. Cancer Res. 69, 2956–2965 (2009)
    Article CAS Google Scholar
  26. Critchley-Thorne, R. J. et al. Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl Acad. Sci. USA 106, 9010–9015 (2009)
    Article ADS CAS Google Scholar
  27. Zhang, B., Karrison, T., Rowley, D. A. & Schreiber, H. IFN-γ- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J. Clin. Invest. 118, 1398–1404 (2008)
    Article CAS Google Scholar
  28. Gurzov, E. N. et al. Pancreatic β-cells activate a JunB/ATF3-dependent survival pathway during inflammation. Oncogene 31, 1723–1732 (2012)
    Article CAS Google Scholar
  29. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008)
    Article CAS Google Scholar
  30. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008)
    Article CAS Google Scholar
  31. Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985)
    Article ADS CAS Google Scholar
  32. Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993)
    Article CAS Google Scholar
  33. Förster, I., Hirose, R., Arbeit, J. M., Clausen, B. E. & Hanahan, D. Limited capacity for tolerization of CD4+ T cells specific for a pancreatic β cell neo-antigen. Immunity 2, 573–585 (1995)
    Article Google Scholar
  34. Maglione, J. E. et al. Transgenic polyoma middle-T mice model premalignant mammary disease. Cancer Res. 61, 8298–8305 (2001)
    CAS PubMed Google Scholar
  35. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nature Rev. Immunol. 7, 118–130 (2007)
    Article CAS Google Scholar
  36. Ziegler, A. et al. EpCAM, a human tumor-associated antigen promotes Th2 development and tumour immune evasion. Blood 113, 3494–3502 (2009)
    Article CAS Google Scholar
  37. Monks, A. et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 83, 757–766 (1991)
    Article CAS Google Scholar
  38. Keyes, W. M. et al. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 19, 1986–1999 (2005)
    Article CAS Google Scholar
  39. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005)
    Article CAS Google Scholar
  40. Kneilling, M. et al. Direct crosstalk between mast cell-TNF and TNFR1-expressing endothelia mediates local tissue inflammation. Blood 114, 1696–1706 (2009)
    Article CAS Google Scholar
  41. Kunder, S. et al. A comprehensive antibody panel for immunohistochemical analysis of formalin-fixed, paraffin-embedded hematopoietic neoplasms of mice: analysis of mouse specific and human antibodies cross-reactive with murine tissue. Toxicol. Pathol. 35, 366–375 (2007)
    Article CAS Google Scholar
  42. Hennige, A. M. et al. Overexpression of kinase-negative protein kinase Cδ in pancreatic β-cells protects mice from diet-induced glucose intolerance and β-cell dysfunction. Diabetes 59, 119–127 (2010)
    Article CAS Google Scholar
  43. Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med. 192, 1441–1452 (2000)
    Article CAS Google Scholar

Download references

Acknowledgements

The authors thank A. Knuth, H. G. Rammensee, K. Ghoreschi, J. Brück, G. Riethmüller, G. Stingl, T. Biedermann and A. Yazdi for discussions, T. Haug for technical support in the chromium release assay, R. Dummer for melanoma samples, W. Kempf for technical support in the cell cycle analysis and S. Lowe for the p16–p19 shRNA concept. The technical assistance of S. Weidemann and M. Dierstein is gratefully acknowledged. This work is part of the doctoral thesis of E.B., S.A., M.H., K.B., J.Berdel and C.G., and was supported by the Sander Stiftung (2005.043.2 and 2005.043.3), the Deutsche Krebshilfe (No. 109037), the IZKF-Promotionskolleg ‘Molekulare Medizin’ 2010 (1886-0-0), 2011 (PK 2011-3) and 2012 (PK 2012-1), the Deutsche Forschungsgemeinschaft (SFB 685, SFB 773 and Wi 1279/3-1) and in part by the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DzD e.V.).

Author information

Author notes

  1. Heidi Braumüller and Thomas Wieder: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Dermatology, Eberhard Karls University, Liebermeister Strasse 25, 72076 Tübingen, Germany,
    Heidi Braumüller, Thomas Wieder, Ellen Brenner, Sonja Aßmann, Matthias Hahn, Manfred Kneilling, Christoph Griessinger, Kilian Braungart, Tarun Mehra, Birgit Fehrenbacher, Julia Berdel, Heike Niessner, Friedegund Meier, Jürgen Bauer, Martin Schaller & Martin Röcken
  2. Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University, Hoppe-Seyler-Strasse 1, 72076 Tübingen, Germany,
    Mohammed Alkhaled, Karin Schilbach & Rupert Handgretinger
  3. Interfaculty Institute for Biochemistry, Eberhard Karls University, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany ,
    Frank Essmann & Klaus Schulze-Osthoff
  4. Department for Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Eberhard Karls University, Röntgenweg 13, 72076 Tübingen, Germany,
    Christoph Griessinger
  5. Department of Internal Medicine IV, Endocrinology, Diabetology and Clinical Chemistry, Eberhard Karls University, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany,
    Felicia Ranta, Susanne Ullrich & Hans-Ulrich Häring
  6. Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Marchionini Strasse 25, 81377 München, Germany ,
    Ralph Mocikat
  7. Clinic of Oncology, University Hospital Zurich, Raemistrasse 100, 8091 Zürich, Switzerland ,
    Maries van den Broek
  8. Comprehensive Cancer Center Tübingen, German Cancer Consortium (DKTK), Herrenberger Strasse 23, D-72070 Tübingen, Germany ,
    Rupert Handgretinger, Falko Fend, Klaus Schulze-Osthoff & Martin Röcken
  9. Department of Pathology, Eberhard Karls University, Liebermeister Strasse 8, 72076 Tübingen, Germany,
    Leticia Quintanilla-Martinez & Falko Fend
  10. Division of Molecular Oncology of Solid Tumors, Department of Internal Medicine I, Eberhard Karls University, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany,
    Marina Pesic & Lars Zender

Authors

  1. Heidi Braumüller
    You can also search for this author inPubMed Google Scholar
  2. Thomas Wieder
    You can also search for this author inPubMed Google Scholar
  3. Ellen Brenner
    You can also search for this author inPubMed Google Scholar
  4. Sonja Aßmann
    You can also search for this author inPubMed Google Scholar
  5. Matthias Hahn
    You can also search for this author inPubMed Google Scholar
  6. Mohammed Alkhaled
    You can also search for this author inPubMed Google Scholar
  7. Karin Schilbach
    You can also search for this author inPubMed Google Scholar
  8. Frank Essmann
    You can also search for this author inPubMed Google Scholar
  9. Manfred Kneilling
    You can also search for this author inPubMed Google Scholar
  10. Christoph Griessinger
    You can also search for this author inPubMed Google Scholar
  11. Felicia Ranta
    You can also search for this author inPubMed Google Scholar
  12. Susanne Ullrich
    You can also search for this author inPubMed Google Scholar
  13. Ralph Mocikat
    You can also search for this author inPubMed Google Scholar
  14. Kilian Braungart
    You can also search for this author inPubMed Google Scholar
  15. Tarun Mehra
    You can also search for this author inPubMed Google Scholar
  16. Birgit Fehrenbacher
    You can also search for this author inPubMed Google Scholar
  17. Julia Berdel
    You can also search for this author inPubMed Google Scholar
  18. Heike Niessner
    You can also search for this author inPubMed Google Scholar
  19. Friedegund Meier
    You can also search for this author inPubMed Google Scholar
  20. Maries van den Broek
    You can also search for this author inPubMed Google Scholar
  21. Hans-Ulrich Häring
    You can also search for this author inPubMed Google Scholar
  22. Rupert Handgretinger
    You can also search for this author inPubMed Google Scholar
  23. Leticia Quintanilla-Martinez
    You can also search for this author inPubMed Google Scholar
  24. Falko Fend
    You can also search for this author inPubMed Google Scholar
  25. Marina Pesic
    You can also search for this author inPubMed Google Scholar
  26. Jürgen Bauer
    You can also search for this author inPubMed Google Scholar
  27. Lars Zender
    You can also search for this author inPubMed Google Scholar
  28. Martin Schaller
    You can also search for this author inPubMed Google Scholar
  29. Klaus Schulze-Osthoff
    You can also search for this author inPubMed Google Scholar
  30. Martin Röcken
    You can also search for this author inPubMed Google Scholar

Contributions

M.R. originally developed the concept, further elaborated on it, and designed the experiments together with H.B., T.W., R.M. and K.S.-O. H.B., T.W., S.A., M.K., C.G., F.E., M.H., K.B., T.M. and E.B. performed experiments and analysed the data. B.F. and M.S. established and carried out fluorescence microscopy. L.Q.-M. and F.F. performed light microscopy and advised on cell biology. M.A., K.S. and R.H. supervised and performed the β-cancer-cell-transfer experiments. L.Z. and M.P. generated shp16–p19 MSCV vectors and supervised the knockdown experiments. H.N. and F.M. isolated primary melanoma cells, J.Berdel and J.Bauer collected human melanoma specimen and performed immunohistochemical analysis. F.R., S.U. and H.-U.H. isolated β-cancer cells and advised on β-cell physiology. H.B., T.W., M.v.d.B., K.S.-O. and M.R. interpreted the data and wrote the paper.

Corresponding author

Correspondence toMartin Röcken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This fie contains Supplementary Figures 1-16, Supplementary Tables 1-3, a chart showing the clinical and pathological characterization of patients, and a chart showing the sequences for RNA constructs. (PDF 3208 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Braumüller, H., Wieder, T., Brenner, E. et al. T-helper-1-cell cytokines drive cancer into senescence.Nature 494, 361–365 (2013). https://doi.org/10.1038/nature11824

Download citation