Richness of human gut microbiome correlates with metabolic markers (original) (raw)

Accession codes

Accessions

European Nucleotide Archive

Data deposits

The raw Illumina read data for all samples has been deposited in the EBI European Nucleotide Archive under the accession number ERP003612.

References

  1. World Health Organization. Obesity and overweight. Fact sheet no. 311; http://www.who.int/mediacentre/factsheets/fs311/en/ (2006)
  2. Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 32, 1431–1437 (2008)
    Article CAS Google Scholar
  3. Stunkard, A. J., Harris, J. R., Pedersen, N. L. & McClearn, G. E. The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322, 1483–1487 (1990)
    Article CAS PubMed Google Scholar
  4. Allison, D. B. et al. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int. J. Obes. Relat. Metab. Disord. 20, 501–506 (1996)
    CAS PubMed Google Scholar
  5. Maes, H. H., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351 (1997)
    Article CAS PubMed Google Scholar
  6. Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genet. 42, 937–948 (2010)
    Article CAS PubMed Google Scholar
  7. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007)
    Article ADS CAS PubMed PubMed Central Google Scholar
  8. Loos, R. J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nature Genet. 40, 768–775 (2008)
    Article CAS PubMed Google Scholar
  9. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genet. 41, 25–34 (2009)
    Article CAS PubMed Google Scholar
  10. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genet. 41, 18–24 (2009)
    Article CAS PubMed Google Scholar
  11. Heid, I. M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genet. 42, 949–960 (2010)
    Article CAS PubMed Google Scholar
  12. Lindgren, C. M. et al. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet. 5, e1000508 (2009)
    Article PubMed PubMed Central CAS Google Scholar
  13. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006)
    Article ADS CAS PubMed Google Scholar
  14. Furet, J. P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010)
    Article CAS PubMed PubMed Central Google Scholar
  15. Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32, 1720–1724 (2008)
    Article CAS Google Scholar
  16. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010)
    Article PubMed Google Scholar
  17. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009)
    Article ADS CAS PubMed Google Scholar
  18. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004)
    Article ADS PubMed CAS PubMed Central Google Scholar
  19. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005)
    Article ADS CAS PubMed PubMed Central Google Scholar
  20. Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008)
    Article CAS PubMed PubMed Central Google Scholar
  21. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006)
    Article ADS PubMed Google Scholar
  22. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010)
    Article CAS PubMed PubMed Central Google Scholar
  23. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011)
    Article CAS PubMed PubMed Central Google Scholar
  24. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature http://dx.doi.org/10.1038/nature12480 (this issue)
  25. Rajilić-Stojanovic, M. et al. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ. Microbiol. 11, 1736–1751 (2009)
    Article PubMed PubMed Central CAS Google Scholar
  26. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006)
    Article CAS PubMed PubMed Central Google Scholar
  27. Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011)
    Article PubMed Google Scholar
  28. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012)
    Article ADS CAS PubMed Google Scholar
  29. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009)
    Article ADS CAS PubMed PubMed Central Google Scholar
  30. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012)
    Article ADS CAS PubMed PubMed Central Google Scholar
  31. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010)
    Article ADS CAS PubMed PubMed Central Google Scholar
  32. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012)
    Article ADS CAS PubMed PubMed Central Google Scholar
  33. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008)
    Article ADS CAS PubMed PubMed Central Google Scholar
  34. Devillard, E., McIntosh, F. M., Duncan, S. H. & Wallace, R. J. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J. Bacteriol. 189, 2566–2570 (2007)
    Article CAS PubMed PubMed Central Google Scholar
  35. Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010)
    Article ADS CAS PubMed Google Scholar
  36. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005)
    Article PubMed PubMed Central Google Scholar
  37. Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60, 631–637 (2011)
    Article PubMed Google Scholar
  38. Yang, B. et al. Unsupervised binning of environmental genomic fragments based on an error robust selection of l-mers. BMC Bioinformatics 11 (suppl. 2). S5 (2010)
    CAS PubMed PubMed Central Google Scholar
  39. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012)
    Article ADS CAS PubMed Google Scholar
  40. Chevaleyre, Y., Koriche, F. & Zucker, J.-D. Rounding methods for discrete linear classification. Proc. 30th Int. Conf. Machine Learning (ICML-13) 651–659 (2013)
  41. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)
    MathSciNet MATH Google Scholar
  42. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011)
    Article ADS CAS PubMed PubMed Central Google Scholar
  43. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nature Rev. Immunol. 11, 85–97 (2011)
    Article CAS Google Scholar
  44. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006)
    Article CAS PubMed PubMed Central Google Scholar
  45. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005)
    Article ADS PubMed CAS Google Scholar
  46. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007)
    Article ADS CAS PubMed PubMed Central Google Scholar
  47. Mandard, S. et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 281, 934–944 (2006)
    Article CAS PubMed Google Scholar
  48. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 22, 2416–2426 (2008)
    Article CAS PubMed Google Scholar
  49. Ajslev, T. A., Andersen, C. S., Gamborg, M., Sorensen, T. I. & Jess, T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. 35, 522–529 (2011)
    Article CAS Google Scholar
  50. Sun, Y. et al. Advanced computational algorithms for microbial community analysis using massive 16S rRNA sequence data. Nucleic Acids Res. 38, e205 (2010)
    Article ADS PubMed PubMed Central CAS Google Scholar
  51. Jørgensen, T. et al. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur. J. Cardiovasc. Prev. Rehabil. 10, 377–386 (2003)
    Article PubMed Google Scholar
  52. World Health Organization. Preventing and managing the globalepidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 894, 1–253 (2000)
  53. Treuth, M. S., Hunter, G. R. & Kekes-Szabo, T. Estimating intraabdominal adipose tissue in women by dual-energy X-ray absorptiometry. Am. J. Clin. Nutr. 62, 527–532 (1995)
    Article CAS PubMed Google Scholar
  54. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)
    Article CAS PubMed Google Scholar
  55. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009)
    Article CAS PubMed Google Scholar
  56. Jensen, L. J. et al. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, D250–D254 (2008)
    Article CAS PubMed Google Scholar
  57. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012)
    Article CAS PubMed Google Scholar

Download references

Acknowledgements

The authors wish to thank A. Forman, T. Lorentzen, B. Andreasen, G. J. Klavsen and M. M. Andersen for technical assistance; A. L. Nielsen, G. Lademann and M. M. H. Kristensen for management assistance, K. Kiil for discussions and assistance, and A. Walker for comments on the manuscript. This research has received funding from European Community’s Seventh Framework Program (FP7/2007-2013): MetaHIT, grant agreement HEALTH-F4-2007-201052. Additional funding came from The Lundbeck Foundation Centre for Applied Medical Genomics in Personalized Disease Prediction, Prevention and Care (LuCamp, http://www.lucamp.org), ANR MicroObes, the Metagenopolis grant ANR-11-DPBS-0001, Region Ile de France (CODDIM) and Fondacoeur. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (http://www.metabol.ku.dk).

Author information

Author notes

  1. Emmanuelle Le Chatelier, Trine Nielsen, Junjie Qin and Edi Prifti: These authors contributed equally to this work.

Authors and Affiliations

  1. INRA, Institut National de la Recherche Agronomique, US1367 Metagenopolis, 78350 Jouy en Josas, France,
    Emmanuelle Le Chatelier, Edi Prifti, Mathieu Almeida, Jean-Michel Batto, Sean Kennedy, Pierre Leonard, Florence Levenez, Nicolas Pons, Julien Tap, Joël Doré & S. Dusko Ehrlich
  2. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark,
    Trine Nielsen, Manimozhiyan Arumugam, Kristoffer Burgdorf, Niels Grarup, Torben Hansen & Oluf Pedersen
  3. BGI-Shenzhen, Shenzhen, 518083, China
    Junjie Qin, Manimozhiyan Arumugam, Junhua Li & Jun Wang
  4. Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium,
    Falk Hildebrand, Gwen Falony & Jeroen Raes
  5. Department of Bioscience Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium,
    Falk Hildebrand, Gwen Falony & Jeroen Raes
  6. European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany,
    Manimozhiyan Arumugam, Shinichi Sunagawa, Julien Tap & Peer Bork
  7. School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
    Junhua Li
  8. Research Centre for Prevention and Health, Glostrup University Hospital, DK-2900 Glostrup, Denmark,
    Torben Jørgensen
  9. Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark,
    Torben Jørgensen
  10. Institute of Public Health, Faculty of Medicine, University of Aalborg, DK-9100 Aalborg, Denmark,
    Torben Jørgensen
  11. Department of Clinical Biochemistry, Vejle Hospital, DK-7100 Vejle, Denmark,
    Ivan Brandslund
  12. Institute of Regional Health Research, University of Southern Denmark, DK-8200 Odense, Denmark,
    Ivan Brandslund
  13. Center for Biological Sequence Analysis & Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark,
    Henrik Bjørn Nielsen, Agnieszka S. Juncker, Marcelo Bertalan, Simon Rasmussen, Søren Brunak & Thomas Sicheritz-Ponten
  14. Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands,
    Sebastian Tims, Erwin G. Zoetendal, Michiel Kleerebezem & Willem M. de Vos
  15. Institut National de la Santé et de la Recherche Médicale, U 872, Nutriomique, Équipe 7, Centre de Recherches des Cordeliers, 75006 Paris, France,
    Karine Clément & Jean-Daniel Zucker
  16. Université Pierre et Marie-Curie-Paris VI, 75006 Paris, France,
    Karine Clément & Jean-Daniel Zucker
  17. Assistance Publique-Hôpitaux de Paris, Institute of Cardiometabolism and Nutrition, CRNH-Ile de France, Pitié-Salpêtrière, 75013 Paris, France,
    Karine Clément
  18. INRA, Institut National de la Recherche Agronomique, UMR 14121 MICALIS, 78350 Jouy en Josas, France,
    Joël Doré & Pierre Renault
  19. Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark,
    Karsten Kristiansen & Jun Wang
  20. Department of Bacteriology and Immunology, University of Helsinki, FIN-00014 Finland,
    Willem M. de Vos
  21. Institut de Recherche pour le Développement, UMI 209, Unité de modélisation mathématique et informatique des Systèmes Complexes, F-93143 Bondy, France,
    Jean-Daniel Zucker
  22. Faculty of Health Sciences, University of Southern Denmark, DK-8200 Odense, Denmark,
    Torben Hansen
  23. King Abdulazziz University, Jeddah 21589, Saudi Arabia,
    Jun Wang
  24. Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark,
    Jun Wang
  25. Center for Sequencing Aarhus University, DK-8000 Aarhus C, Denmark,
    Jun Wang
  26. Hagedorn Research Institute, DK-2820 Gentofte, Denmark,
    Oluf Pedersen
  27. Institute of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark,
    Oluf Pedersen
  28. Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark,
    Oluf Pedersen
  29. INRA, Institut National de la Recherche Agronomique, UMR 14121 MICALIS, 78350 Jouy en Josas, France.,
    Eric Guedon, Christine Delorme, Séverine Layec, Ghalia Khaci, Maarten van de Guchte, Gaetana Vandemeulebrouck, Alexandre Jamet, Rozenn Dervyn, Nicolas Sanchez, Emmanuelle Maguin, Yohanan Winogradski, Antonella Cultrone, Marion Leclerc, Catherine Juste & Hervé Blottière
  30. INRA, Institut National de la Recherche Agronomique, US1367 Metagenopolis, 78350 Jouy en Josas, France.,
    Florence Haimet & Hervé Blottière
  31. Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France.,
    Eric Pelletier, Denis LePaslier, François Artiguenave, Thomas Bruls & Jean Weissenbach
  32. Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France.,
    Eric Pelletier, Denis LePaslier, François Artiguenave, Thomas Bruls & Jean Weissenbach
  33. Evry, France, Université d’Evry Val d’Essone. 91000 Evry, France.,
    Eric Pelletier, Denis LePaslier, François Artiguenave, Thomas Bruls & Jean Weissenbach
  34. The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,
    Keith Turner & Julian Parkhill
  35. Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain.,
    Maria Antolin, Chaysavanh Manichanh, Francesc Casellas, Natalia Boruel, Encarna Varela, Antonio Torrejon & Francisco Guarner
  36. Danone Research, 91120 Palaiseau, France.,
    Gérard Denariaz, Muriel Derrien, Johan E. T. van Hylckama Vlieg & Patrick Veiga
  37. Gut Biology & Microbiology, Danone Research, Centre for Specialized Nutrition, Bosrandweg 20, 6704 PH Wageningen, The Netherlands.,
    Raish Oozeer & Jan Knol
  38. Istituto Europeo di Oncologia, 20100 Milan, Italy.,
    Maria Rescigno
  39. Institut Mérieux, 17 rue Burgelat, 69002 Lyon, France.,
    Christian Brechot, Christine M’Rini & Alexandre Mérieux
  40. European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,
    Takuji Yamada

Authors

  1. Emmanuelle Le Chatelier
    You can also search for this author inPubMed Google Scholar
  2. Trine Nielsen
    You can also search for this author inPubMed Google Scholar
  3. Junjie Qin
    You can also search for this author inPubMed Google Scholar
  4. Edi Prifti
    You can also search for this author inPubMed Google Scholar
  5. Falk Hildebrand
    You can also search for this author inPubMed Google Scholar
  6. Gwen Falony
    You can also search for this author inPubMed Google Scholar
  7. Mathieu Almeida
    You can also search for this author inPubMed Google Scholar
  8. Manimozhiyan Arumugam
    You can also search for this author inPubMed Google Scholar
  9. Jean-Michel Batto
    You can also search for this author inPubMed Google Scholar
  10. Sean Kennedy
    You can also search for this author inPubMed Google Scholar
  11. Pierre Leonard
    You can also search for this author inPubMed Google Scholar
  12. Junhua Li
    You can also search for this author inPubMed Google Scholar
  13. Kristoffer Burgdorf
    You can also search for this author inPubMed Google Scholar
  14. Niels Grarup
    You can also search for this author inPubMed Google Scholar
  15. Torben Jørgensen
    You can also search for this author inPubMed Google Scholar
  16. Ivan Brandslund
    You can also search for this author inPubMed Google Scholar
  17. Henrik Bjørn Nielsen
    You can also search for this author inPubMed Google Scholar
  18. Agnieszka S. Juncker
    You can also search for this author inPubMed Google Scholar
  19. Marcelo Bertalan
    You can also search for this author inPubMed Google Scholar
  20. Florence Levenez
    You can also search for this author inPubMed Google Scholar
  21. Nicolas Pons
    You can also search for this author inPubMed Google Scholar
  22. Simon Rasmussen
    You can also search for this author inPubMed Google Scholar
  23. Shinichi Sunagawa
    You can also search for this author inPubMed Google Scholar
  24. Julien Tap
    You can also search for this author inPubMed Google Scholar
  25. Sebastian Tims
    You can also search for this author inPubMed Google Scholar
  26. Erwin G. Zoetendal
    You can also search for this author inPubMed Google Scholar
  27. Søren Brunak
    You can also search for this author inPubMed Google Scholar
  28. Karine Clément
    You can also search for this author inPubMed Google Scholar
  29. Joël Doré
    You can also search for this author inPubMed Google Scholar
  30. Michiel Kleerebezem
    You can also search for this author inPubMed Google Scholar
  31. Karsten Kristiansen
    You can also search for this author inPubMed Google Scholar
  32. Pierre Renault
    You can also search for this author inPubMed Google Scholar
  33. Thomas Sicheritz-Ponten
    You can also search for this author inPubMed Google Scholar
  34. Willem M. de Vos
    You can also search for this author inPubMed Google Scholar
  35. Jean-Daniel Zucker
    You can also search for this author inPubMed Google Scholar
  36. Jeroen Raes
    You can also search for this author inPubMed Google Scholar
  37. Torben Hansen
    You can also search for this author inPubMed Google Scholar
  38. Peer Bork
    You can also search for this author inPubMed Google Scholar
  39. Jun Wang
    You can also search for this author inPubMed Google Scholar
  40. S. Dusko Ehrlich
    You can also search for this author inPubMed Google Scholar
  41. Oluf Pedersen
    You can also search for this author inPubMed Google Scholar

Consortia

MetaHIT consortium

Contributions

O.P. and S.D.E. designed the study, O.P., S.D.E., P.B., W.J., S.B., K.C., J.D., M.K., P.R., T.S.-P., W.M.d.V., T.H., J.R. and K.K. managed the study. T.N., K.B., T.H., N.G., T.J., I.B. and O.P. carried out patient phenotyping and clinical data analyses. T.N., K.B. and F.L. performed sample collection and DNA extraction. J.Q. and J.L. supervised DNA sequencing and gene profiling. S.D.E. and O.P. designed and supervised the data analyses. E.L.C., E.P., T.N., N.G., G.F., F.H., M.Al., M.Ar., J.-M.B., S.K., P.L., N.P., S.S., J.T., J.Q., J.L., J.-D.Z., S.R. and S.D.E. performed the data analyses. S.T. and E.G.Z. carried out HITChip analysis. M.B., A.S.J., H.B.N. and T.S.-P. carried out metagenomic array analyses. S.D.E., O.P., J.R. and P.B. wrote the paper. MetaHIT consortium members provided creative environment and constructive criticism throughout the study.

Corresponding authors

Correspondence toPeer Bork, Jun Wang, S. Dusko Ehrlich or Oluf Pedersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

PowerPoint slides

Rights and permissions

About this article

Cite this article

Le Chatelier, E., Nielsen, T., Qin, J. et al. Richness of human gut microbiome correlates with metabolic markers.Nature 500, 541–546 (2013). https://doi.org/10.1038/nature12506

Download citation