An archaeal origin of eukaryotes supports only two primary domains of life (original) (raw)
References
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA74, 5088–5090 (1977)A landmark paper that, together with ref. 4, reported the discovery of the Archaea and discussed its far-reaching implications for early evolution. ADSCASPubMedPubMed Central Google Scholar
Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature440, 623–630 (2006) ADSCASPubMed Google Scholar
Woese, C. R. & Fox, G. E. The concept of cellular evolution. J. Mol. Evol.10, 1–6 (1977) ADSCASPubMed Google Scholar
Doolittle, W. F. & Brown, J. R. Tempo, mode, the progenote, and the universal root. Proc. Natl Acad. Sci. USA91, 6721–6728 (1994) ADSCASPubMedPubMed Central Google Scholar
Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA86, 9355–9359 (1989)Together withref. 7, this paper presented the first evidence for rooting the tree of life on the bacterial stem, but seeref. 5for a still-relevant discussion of these analyses and other contemporary ideas about early evolution. ADSCASPubMedPubMed Central Google Scholar
Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA86, 6661–6665 (1989) ADSCASPubMedPubMed Central Google Scholar
Dagan, T., Roettger, M., Bryant, D. & Martin, W. Genome networks root the tree of life between prokaryotic domains. Genome Biol. Evol.2, 379–392 (2010) PubMedPubMed Central Google Scholar
Lake, J. A., Skophammer, R. G., Herbold, C. W. & Servin, J. A. Genome beginnings: rooting the tree of life. Phil. Trans. R. Soc. B364, 2177–2185 (2009) CASPubMedPubMed Central Google Scholar
Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol.24, 1761–1768 (2007) CASPubMed Google Scholar
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA105, 20356–20361 (2008)The first of a series of recent papers demonstrating that analyses of core genes using new phylogenetic models favour the eocyte tree rather than the three-domains tree. ADSCASPubMedPubMed Central Google Scholar
Doolittle, W. F. & Zhaxybayeva, O. in The Prokaryotes: Prokaryotic Biology and Symbiotic Associations (ed. Rosenberg, E. ) (Springer, 2013)A very clear discussion about the issues facing the integration of phylogenetics and classification given the evidence for extensive lateral gene transfer. Google Scholar
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA87, 4576–4579 (1990)Woese and colleagues present their arguments for the rooted three-domains tree of life. ADSCASPubMedPubMed Central Google Scholar
Madigan, M. T., Martingo, J. M., Stahl, D. A. & Clark, D. P. Brock Biology of Microorganisms 13th edn (Benjamin Cummings, 2010) Google Scholar
Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA81, 3786–3790 (1984)This paper presents comparisons of ribosomal structure in Bacteria, Archaea and eukaryotes, providing the initial motivation for the eocyte hypothesis. ADSCASPubMedPubMed Central Google Scholar
Gribaldo, S., Poole, A. M., Daubin, V., Forterre, P. & Brochier-Armanet, C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nature Rev. Microbiol.8, 743–752 (2010) CAS Google Scholar
Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B361, 1023–1038 (2006) CASPubMedPubMed Central Google Scholar
Philippe, H. & Forterre, P. The rooting of the universal tree of life is not reliable. J. Mol. Evol.49, 509–523 (1999) ADSCASPubMed Google Scholar
Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. B364, 2197–2207 (2009) PubMedPubMed Central Google Scholar
Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol.53, 711–723 (2001) ADSCASPubMed Google Scholar
Ho, S. Y. & Jermiin, L. Tracing the decay of the historical signal in biological sequence data. Syst. Biol.53, 623–637 (2004) PubMed Google Scholar
Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol.7 (suppl. 1). S4 (2007) PubMedPubMed Central Google Scholar
Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol.9, e1000602 (2011) CASPubMedPubMed Central Google Scholar
Gouy, M. & Li, W. H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature339, 145–147 (1989) ADSCASPubMed Google Scholar
Olsen, G. J. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harb. Symp. Quant. Biol.52, 825–837 (1987) CASPubMed Google Scholar
Foster, P. G. & Hickey, D. A. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J. Mol. Evol.48, 284–290 (1999) ADSCASPubMed Google Scholar
Foster, P. G. Modeling compositional heterogeneity. Syst. Biol.53, 485–495 (2004) PubMed Google Scholar
Hirt, R. P. et al. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA96, 580–585 (1999) ADSCASPubMedPubMed Central Google Scholar
Lake, J. A. Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl Acad. Sci. USA91, 1455–1459 (1994) ADSCASPubMedPubMed Central Google Scholar
Yang, Z. & Roberts, D. On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol. Biol. Evol.12, 451–458 (1995)An important early contribution demonstrating that modelling changing nucleotide composition in RNA sequences from different species supported the eocyte tree. CASPubMed Google Scholar
Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool.27, 401–410 (1978) Google Scholar
Yang, Z. & Rannala, B. Molecular phylogenetics: principles and practice. Nature Rev. Genet.13, 303–314 (2012) CASPubMed Google Scholar
Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature331, 184–186 (1988) ADSCASPubMed Google Scholar
Sidow, A. & Wilson, A. C. Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J. Mol. Evol.31, 51–68 (1990) ADSCASPubMed Google Scholar
Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol.13, 159–168 (1999) CASPubMed Google Scholar
Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. The deep archaeal roots of eukaryotes. Mol. Biol. Evol.25, 1619–1630 (2008) CASPubMedPubMed Central Google Scholar
Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. The genetic core of the universal ancestor. Genome Res.13, 407–412 (2003) CASPubMedPubMed Central Google Scholar
Katoh, K., Kuma, K. & Miyata, T. Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny. J. Mol. Evol.53, 477–484 (2001) ADSCASPubMed Google Scholar
Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science311, 1283–1287 (2006) ADSCASPubMed Google Scholar
Lake, J. A. The order of sequence alignment can bias the selection of tree topology. Mol. Biol. Evol.8, 378–385 (1991) CASPubMed Google Scholar
Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence data sets. Nature Genet.28, 281–285 (2001) CASPubMed Google Scholar
Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol.21, 1095–1109 (2004)One of the most notable improvements in phylogenetic modelling in the last decade, providing a Bayesian framework for accommodating across-site compositional heterogeneity—a key feature of molecular sequence data. CASPubMed Google Scholar
Guy, L. & Ettema, T. J. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol.19, 580–587 (2011) CASPubMed Google Scholar
Williams, T. A., Foster, P. G., Nye, T. M., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. R. Soc. Lond. B279, 4870–4879 (2012) CAS Google Scholar
Lasek-Nesselquist, E. & Gogarten, J. P. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol. Phylogenet. Evol.69, 17–38 (2013) PubMed Google Scholar
Pester, M., Schleper, C. & Wagner, M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol.14, 300–306 (2011) CASPubMedPubMed Central Google Scholar
Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature496, 215–218 (2013) ADSCASPubMed Google Scholar
Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol.47, 9–17 (1998) CASPubMed Google Scholar
Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA105, 8102–8107 (2008) ADSCASPubMedPubMed Central Google Scholar
Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol.6, 245–252 (2008) CAS Google Scholar
Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res.39, 3204–3223 (2011) CASPubMed Google Scholar
Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. R. Soc. Lond. B278, 1009–1018 (2011) CAS Google Scholar
Ettema, T. J., Lindas, A. C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol.80, 1052–1061 (2011) CASPubMed Google Scholar
Koonin, E. V., Makarova, K. S. & Elkins, J. G. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and “Korarchaeota”. Biol. Direct2, 38 (2007) PubMedPubMed Central Google Scholar
Csurös, M. & Miklos, I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol. Biol. Evol.26, 2087–2095 (2009) PubMedPubMed Central Google Scholar
Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct7, 46 (2012) CASPubMedPubMed Central Google Scholar
Ribeiro, S. & Golding, G. B. The mosaic nature of the eukaryotic nucleus. Mol. Biol. Evol.15, 779–788 (1998)Together withref. 63, this paper presented some of the first tree-based evidence that eukaryotes are genomic chimaeras containing some genes that are most similar to those of Bacteria and others to Archaea. CASPubMed Google Scholar
Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA95, 6239–6244 (1998) ADSCASPubMedPubMed Central Google Scholar
Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol.21, 1643–1660 (2004) CASPubMed Google Scholar
Alsmark, C. et al. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol.14, R19 (2013) PubMedPubMed Central Google Scholar
Cotton, J. A. & McInerney, J. O. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc. Natl Acad. Sci. USA107, 17252–17255 (2010) ADSCASPubMedPubMed Central Google Scholar
Doolittle, W. F. & Bapteste, E. Pattern pluralism and the Tree of Life hypothesis. Proc. Natl Acad. Sci. USA104, 2043–2049 (2007) ADSCASPubMedPubMed Central Google Scholar
Creevey, C. J., Doerks, T., Fitzpatrick, D. A., Raes, J. & Bork, P. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS ONE6, e22099 (2011) ADSCASPubMedPubMed Central Google Scholar
Szollösi, G. J., Boussau, B., Abby, S. S., Tannier, E. & Daubin, V. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl Acad. Sci. USA109, 17513–17518 (2012) ADSPubMedPubMed Central Google Scholar
Cohen, O., Gophna, U. & Pupko, T. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol. Biol. Evol.28, 1481–1489 (2011) CASPubMed Google Scholar
Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA96, 3801–3806 (1999) ADSCASPubMedPubMed Central Google Scholar
Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology26, 386–404 (2000) Google Scholar
Parfrey, L. W., Lahr, D. J., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA108, 13624–13629 (2011) ADSCASPubMedPubMed Central Google Scholar
Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science285, 1033–1036 (1999) CASPubMed Google Scholar
Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature455, 1101–1104 (2008) ADSCASPubMed Google Scholar
Fischer, W. W. Biogeochemistry: life before the rise of oxygen. Nature455, 1051–1052 (2008) ADSCASPubMed Google Scholar
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature440, 516–519 (2006) ADSCASPubMed Google Scholar
Papineau, D., Walker, J. J., Mojzsis, S. J. & Pace, N. R. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol.71, 4822–4832 (2005) CASPubMedPubMed Central Google Scholar
Allwood, A. C. et al. Controls on development and diversity of Early Archean stromatolites. Proc. Natl Acad. Sci. USA106, 9548–9555 (2009) ADSCASPubMedPubMed Central Google Scholar
Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature431, 549–552 (2004) ADSCASPubMed Google Scholar
Cavalier-Smith, T. in Endocytobiology II (eds Schwemmler, W. & Schenk, H.E.A. ) 1027–1034 (De Gruyter, 1983) Google Scholar
van der Giezen, M., Tovar, J. & Clark, C. G. Mitochondria-derived organelles in protists and fungi. Int. Rev. Cytol.244, 175–225 (2005) CASPubMed Google Scholar
Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature396, 133–140 (1998) ADSCASPubMed Google Scholar
Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D. & Embley, T. M. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. R. Soc. Lond. B263, 1053–1059 (1996) ADSCAS Google Scholar
Lane, N. & Martin, W. The energetics of genome complexity. Nature467, 929–934 (2010) ADSCASPubMed Google Scholar
Martin, W. & Koonin, E. V. Introns and the origin of nucleus-cytosol compartmentalization. Nature440, 41–45 (2006) ADSCASPubMed Google Scholar
Lombard, J., Lopez-Garcia, P. & Moreira, D. The early evolution of lipid membranes and the three domains of life. Nature Rev. Microbiol.10, 507–515 (2012) CAS Google Scholar
Pitcher, A. et al. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl. Environ. Microbiol.77, 3468–3477 (2011) CASPubMedPubMed Central Google Scholar
van de Vossenberg, J. L., Driessen, A. J. & Konings, W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles2, 163–170 (1998) CASPubMed Google Scholar
Boucher, Y., Kamekura, M. & Doolittle, W. F. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol.52, 515–527 (2004) CASPubMed Google Scholar
Lombard, J., Lopez-Garcia, P. & Moreira, D. An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids. Mol. Biol. Evol.29, 3261–3265 (2012) CASPubMed Google Scholar
Guldan, H., Matysik, F. M., Bocola, M., Sterner, R. & Babinger, P. Functional assignment of an enzyme that catalyzes the synthesis of an archaea-type ether lipid in bacteria. Angew. Chem. Int. Edn Engl.50, 8188–8191 (2011) CAS Google Scholar
Tan, H. H., Makino, A., Sudesh, K., Greimel, P. & Kobayashi, T. Spectroscopic evidence for the unusual stereochemical configuration of an endosome-specific lipid. Angew. Chem. Int. Edn Engl.51, 533–535 (2012) CAS Google Scholar
Shimada, H. & Yamagishi, A. Stability of heterochiral hybrid membrane made of bacterial _sn_-G3P lipids and archaeal _sn_-G1P lipids. Biochemistry50, 4114–4120 (2011)Reports the production of stable heterochiral membranes containing a mixture of bacterial- and archaeal-type lipids, demonstrating the feasibility of natural mixed membranes. CASPubMed Google Scholar
Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature392, 37–41 (1998) ADSCASPubMed Google Scholar
Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA109, 20537–20542 (2012) ADSCASPubMedPubMed Central Google Scholar
Hampl, V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc. Natl Acad. Sci. USA106, 3859–3864 (2009) ADSCASPubMedPubMed Central Google Scholar
Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl Acad. Sci. USA109, 14942–14947 (2012) ADSCASPubMedPubMed Central Google Scholar
Lindås, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA105, 18942–18946 (2008) ADSPubMedPubMed Central Google Scholar
Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Rev. Microbiol.8, 731–741 (2010) CAS Google Scholar
Blombach, F. et al. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol. Direct4, 39 (2009) PubMedPubMed Central Google Scholar
Daniels, J. P., Kelly, S., Wickstead, B. & Gull, K. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea. Biol. Direct4, 24 (2009) PubMedPubMed Central Google Scholar
Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science257, 74–76 (1992) ADSCASPubMed Google Scholar