TRPV1 shows dynamic ionic selectivity during agonist stimulation (original) (raw)

References

  1. Khakh, B.S. & Lester, H.A. Dynamic selectivity filters in ion channels. Neuron 23, 653–658 (1999).
    Article CAS Google Scholar
  2. Kiss, L., LoTurco, J. & Korn, S.J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999).
    Article CAS Google Scholar
  3. Khakh, B.S., Bao, X.R., Labarca, C. & Lester, H.A. Neuronal P2X transmitter–gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 2, 322–330 (1999).
    Article CAS Google Scholar
  4. Surprenant, A., Rassendren, F., Kawashima, E., North, R.A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).
    Article CAS Google Scholar
  5. Virginio, C., MacKenzie, A., North, R.A. & Surprenant, A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. (Lond.) 519, 335–346 (1999).
    Article CAS Google Scholar
  6. Virginio, C., MacKenzie, A., Rassendren, F.A., North, R.A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nat. Neurosci. 2, 315–321 (1999).
    Article CAS Google Scholar
  7. Caterina, M.J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).
    Article CAS Google Scholar
  8. Ahern, G.P., Wang, X. & Miyares, R.L. Polyamines are potent ligands for the capsaicin receptor TRPV1. J. Biol. Chem. 281, 8991–8995 (2006).
    Article CAS Google Scholar
  9. Binshtok, A.M., Bean, B.P. & Woolf, C.J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607–610 (2007).
    Article CAS Google Scholar
  10. Hellwig, N. et al. TRPV1 acts as proton channel to induce acidification in nociceptive neurons. J. Biol. Chem. 279, 34553–34561 (2004).
    Article CAS Google Scholar
  11. Meyers, J.R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).
    Article CAS Google Scholar
  12. Myrdal, S.E. & Steyger, P.S. TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear. Res. 204, 170–182 (2005).
    Article CAS Google Scholar
  13. Chung, M.K., Guler, A.D. & Caterina, M.J. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J. Biol. Chem. 280, 15928–15941 (2005).
    Article CAS Google Scholar
  14. Zhuang, Z.Y., Xu, H., Clapham, D.E. & Ji, R.R. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J. Neurosci. 24, 8300–8309 (2004).
    Article CAS Google Scholar
  15. Dwyer, T.M., Adams, D.J. & Hille, B. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492 (1980).
    Article CAS Google Scholar
  16. Eickhorst, A.N., Berson, A., Cockayne, D., Lester, H.A. & Khakh, B.S. Control of P2X2 channel permeability by the cytosolic domain. J. Gen. Physiol. 120, 119–131 (2002).
    Article CAS Google Scholar
  17. Akabas, M.H., Stauffer, D.A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310 (1992).
    Article CAS Google Scholar
  18. Owsianik, G., Talavera, K., Voets, T. & Nilius, B. Permeation and selectivity of TRP channels. Annu. Rev. Physiol. 68, 685–717 (2006).
    Article CAS Google Scholar
  19. Huang, S.M. et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400–8405 (2002).
    Article CAS Google Scholar
  20. McNamara, F.N., Randall, A. & Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol. 144, 781–790 (2005).
    Article CAS Google Scholar
  21. Xu, H., Blair, N.T. & Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).
    Article CAS Google Scholar
  22. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).
    Article CAS Google Scholar
  23. Welch, J.M., Simon, S.A. & Reinhart, P.H. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc. Natl. Acad. Sci. USA 97, 13889–13894 (2000).
    Article CAS Google Scholar
  24. Garcia-Martinez, C., Morenilla-Palao, C., Planells-Cases, R., Merino, J.M. & Ferrer-Montiel, A. Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275, 32552–32558 (2000).
    Article CAS Google Scholar
  25. Bhave, G. et al. Protein kinase C phosphorylation sensitizes, but does not activate, the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 100, 12480–12485 (2003).
    Article CAS Google Scholar
  26. Numazaki, M., Tominaga, T., Toyooka, H. & Tominaga, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cε and identification of two target serine residues. J. Biol. Chem. 277, 13375–13378 (2002).
    Article CAS Google Scholar
  27. Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J.B. & McNaughton, P.A. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. (Lond.) 534, 813–825 (2001).
    Article CAS Google Scholar
  28. Liu, L., Lo, Y., Chen, I. & Simon, S.A. The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J. Neurosci. 17, 4101–4111 (1997).
    Article CAS Google Scholar
  29. Ahern, G.P., Brooks, I.M., Miyares, R.L. & Wang, X.B. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J. Neurosci. 25, 5109–5116 (2005).
    Article CAS Google Scholar
  30. Yeh, B.I., Kim, Y.K., Jabbar, W. & Huang, C.L. Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J. 24, 3224–3234 (2005).
    Article CAS Google Scholar
  31. Flynn, G.E., Johnson, J.P., Jr. & Zagotta, W.N. Cyclic nucleotide–gated channels: shedding light on the opening of a channel pore. Nat. Rev. Neurosci. 2, 643–651 (2001).
    Article CAS Google Scholar
  32. Alam, A., Shi, N. & Jiang, Y. Structural insight into Ca2+ specificity in tetrameric cation channels. Proc. Natl. Acad. Sci. USA 104, 15334–15339 (2007).
    Article CAS Google Scholar
  33. Docherty, R.J., Yeats, J.C., Bevan, S. & Boddeke, H.W. Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch. 431, 828–837 (1996).
    Article CAS Google Scholar
  34. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).
    Article CAS Google Scholar
  35. Khakh, B.S. & Egan, T.M. Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics. J. Biol. Chem. 280, 6118–6129 (2005).
    Article CAS Google Scholar
  36. Khakh, B.S., Zhou, X., Sydes, J., Galligan, J.J. & Lester, H.A. State-dependent cross-inhibition between transmitter-gated cation channels. Nature 406, 405–410 (2000).
    Article CAS Google Scholar
  37. Bleakman, D., Brorson, J.R. & Miller, R.J. The effect of capsaicin on voltage-gated calcium currents and calcium signals in cultured dorsal root ganglion cells. Br. J. Pharmacol. 101, 423–431 (1990).
    Article CAS Google Scholar
  38. Evans, A.R., Nicol, G.D. & Vasko, M.R. Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res. 712, 265–273 (1996).
    Article CAS Google Scholar
  39. Marinelli, S., Vaughan, C.W., Christie, M.J. & Connor, M. Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J. Physiol. (Lond.) 543, 531–540 (2002).
    Article CAS Google Scholar
  40. Jancso, G. Pathobiological reactions of C fibre primary sensory neurones to peripheral nerve injury. Exp. Physiol. 77, 405–431 (1992).
    Article CAS Google Scholar
  41. Chancellor, M.B. & de Groat, W.C. Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder. J. Urol. 162, 3–11 (1999).
    Article CAS Google Scholar
  42. Skeberdis, V.A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501–510 (2006).
    Article CAS Google Scholar
  43. Sobczyk, A. & Svoboda, K. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Neuron 53, 17–24 (2007).
    Article CAS Google Scholar
  44. Liu, L. & Simon, S.A. Similarities and differences in the currents activated by capsaicin, piperine and zingerone in rat trigeminal ganglion cells. J. Neurophysiol. 76, 1858–1869 (1996).
    Article CAS Google Scholar
  45. Szallasi, A. The vanilloid (capsaicin) receptor: receptor types and species differences. Gen. Pharmacol. 25, 223–243 (1994).
    Article CAS Google Scholar
  46. Runnels, L.W., Yue, L. & Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).
    Article CAS Google Scholar
  47. Lewis, C.A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. (Lond.) 286, 417–445 (1979).
    Article CAS Google Scholar

Download references