Monod, J. & Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol.26, 389–401 (1961) ArticleCASPubMed Google Scholar
Changeux, J. P. The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harb. Symp. Quant. Biol.26, 313–318 (1961) ArticleCASPubMed Google Scholar
Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol.12, 88–118 (1965) ArticleCASPubMed Google Scholar
Freiburger, L. A. et al. Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nature Struct. Mol. Biol.18, 288–294 (2011) ArticleCAS Google Scholar
Nussinov, R., Tsai, C. J. & Ma, B. The (still) underappreciated role of allostery in the cellular network. Annu. Rev. Biophys.42, 169–189 (2013) ArticleCASPubMedPubMed Central Google Scholar
Monod, J. Chance and Necessity: Essay on the Natural Philosophy of Modern Biology (Penguin Books, 1977) Google Scholar
Hilser, V. J., Wrabl, J. O. & Motlagh, H. N. Structural and energetic basis of allostery. Ann. Rev. Biophys.41, 585–609 (2012) ArticleCAS Google Scholar
Perutz, M. F. et al. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature185, 416–422 (1960) ArticleADSCASPubMed Google Scholar
Dickerson, R. E. X-ray studies of protein mechanisms. Annu. Rev. Biophys. Chem.41, 815–842 (1972) CAS Google Scholar
Laskowski, R. A., Gerick, F. & Thornton, J. M. The structural basis of allosteric regulation in proteins. FEBS Lett.583, 1692–1698 (2009) ArticleCASPubMed Google Scholar
Perutz, M. F., Wilkinson, A. J., Paoli, M. & Dodson, G. G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct.27, 1–34 (1998) ArticleCASPubMed Google Scholar
Changeux, J. P. & Edelstein, S. J. Allosteric mechanisms of signal transduction. Science308, 1424–1428 (2005) ArticleADSCASPubMed Google Scholar
Gunasekaran, K., Ma, B. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins Struct. Funct. Bioinf.57, 433–443 (2004) ArticleCAS Google Scholar
Tzeng, S. R. & Kalodimos, C. G. Protein dynamics and allostery: an NMR view. Curr. Opin. Struct. Biol.21, 62–67 (2011) ArticleCASPubMed Google Scholar
Kern, D. & Zuiderweg, E. R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol.13, 748–757 (2003) ArticleCASPubMed Google Scholar
Tsai, C. J., del Sol, A. & Nussinov, R. Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol. Biosyst.5, 207–216 (2009) ArticleCASPubMedPubMed Central Google Scholar
Daily, M. D. & Gray, J. J. Allosteric communication occurs via networks of tertiary and quaternary motions in proteins. PLOS Comput. Biol.5, e1000293 (2009) ArticleADSPubMedPubMed CentralCAS Google Scholar
Swain, J. F. et al. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell26, 27–39 (2007) ArticleCASPubMedPubMed Central Google Scholar
Petit, C. M., Zhang, J., Sapienza, P. J., Fuentes, E. J. & Lee, A. L. Hidden dynamic allostery in a PDZ domain. Proc. Natl Acad. Sci. USA106, 18249–18254 (2009) ArticleADSCASPubMedPubMed Central Google Scholar
Tzeng, S. R. & Kalodimos, C. G. Protein activity regulation by conformational entropy. Nature488, 236–240 (2012) ArticleADSCASPubMed Google Scholar
Tzeng, S. R. & Kalodimos, C. G. Dynamic activation of an allosteric regulatory protein. Nature462, 368–372 (2009) ArticleADSCASPubMed Google Scholar
Popovych, N., Sun, S., Ebright, R. H. & Kalodimos, C. G. Dynamically driven protein allostery. Nature Struct. Mol. Biol.13, 831–838 (2006)The first experimental demonstrations of dynamically mediated protein allostery in the CAP using relaxation dispersion NMR and NMR-detected hydrogen exchange. ArticleCAS Google Scholar
Reichheld, S. E., Yu, Z. & Davidson, A. R. The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor. Proc. Natl Acad. Sci. USA106, 22263–22268 (2009) ArticleADSCASPubMedPubMed Central Google Scholar
Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell142, 101–111 (2010)This article demonstrates how increasing the relative concentration of one ligand can result in conditional cooperativity in an intrinsically disordered protein; in other words, the same protein can initially be an on-switch but then an off-switch at higher concentrations. ArticleCASPubMed Google Scholar
Sevcsik, E., Trexler, A. J., Dunn, J. M. & Rhoades, E. Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J. Am. Chem. Soc.133, 7152–7158 (2011) ArticleCASPubMedPubMed Central Google Scholar
Ferreon, A. C. M., Ferreon, J. C., Wright, P. E. & Deniz, A. A. Modulation of allostery by protein intrinsic disorder. Nature498, 390–394 (2013)This article directly demonstrates cooperative ‘switching’ behaviour in an intrinsically disordered protein, via allosteric effects from truncation of the amino acid sequence. ArticleADSCASPubMedPubMed Central Google Scholar
Monod, J., Changeux, J. P. & Jacob, F. Allosteric proteins and cellular control systems. J. Mol. Biol.6, 306–329 (1963) ArticleCASPubMed Google Scholar
Koshland, D. E., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry5, 365–385 (1966) ArticleCASPubMed Google Scholar
Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci.17, 1295–1307 (2008)A thoughtful, comprehensive review that synthesizes the ‘old’ and ‘new’ views of allostery with experimental and computational case studies from the literature. ArticleCASPubMedPubMed Central Google Scholar
Koshland, D. E. Enzyme flexibility and enzyme action. J. Cell. Comp. Physiol.54, 245–258 (1959) ArticleCASPubMed Google Scholar
Whitley, M. J. & Lee, A. L. Frameworks for understanding long-range intra-protein communication. Curr. Protein Pept. Sci.10, 116–127 (2009) ArticleCASPubMedPubMed Central Google Scholar
Changeux, J. P. Allostery and the Monod–Wyman–Changeux model after 50 years. Ann. Rev. Biophys.41, 103–133 (2012) ArticleCAS Google Scholar
Eaton, W. A. et al. Evolution of allosteric models for hemoglobin. IUBMB Life59, 586–599 (2007) ArticleCASPubMed Google Scholar
Eaton, W. A., Henry, E. R., Hofrichter, J. & Mozzarelli, A. Is cooperative oxygen binding by hemoglobin really understood? Nature Struct. Biol.6, 351–358 (1999) ArticleCASPubMed Google Scholar
Erman, B. A fast approximate method of identifying paths of allosteric communication in proteins. Proteins Struct. Funct. Bioinf.81, 1097–1101 (2013) ArticleCAS Google Scholar
England, J. L. Allostery in protein domains reflects a balance of steric and hydrophobic effects. Structure19, 967–975 (2011) ArticleCASPubMed Google Scholar
VanWart, A. T., Eargle, J., Luthey-Schulten, Z. & Amaro, R. E. Exploring residue component contributions to dynamical network models of allostery. J. Chem. Theory Comput.8, 2949–2961 (2012) ArticleCASPubMedPubMed Central Google Scholar
Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science286, 295–299 (1999) ArticleCASPubMed Google Scholar
Süel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nature Struct. Biol.10, 59–69 (2003) ArticlePubMedCAS Google Scholar
Colombo, M. F., Rau, D. C. & Parsegian, V. A. Protein solvation in allosteric regulation: a water effect on hemoglobin. Science256, 655–659 (1992)Groundbreaking experimental work demonstrating the large energetic effects of hydration on haemoglobin conformation and thus protein allostery. ArticleADSCASPubMed Google Scholar
Elber, R. Simulations of allosteric transitions. Curr. Opin. Struct. Biol.21, 167–172 (2011) ArticleCASPubMed Google Scholar
Weinkam, P., Chen, Y. C., Pons, J. & Sali, A. Impact of mutations on the allosteric conformational equilibrium. J. Mol. Biol.425, 647–661 (2013) ArticleCASPubMed Google Scholar
Marcos, E., Crehuet, R. & Bahar, I. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members. PLOS Comput. Biol.7, e1002201 (2011) ArticleADSCASPubMedPubMed Central Google Scholar
Silva, M. M., Rogers, P. H. & Arnone, A. A third quaternary structure of human hemoglobin A at 1.7-Å resolution. J. Biol. Chem.267, 17248–17256 (1992) ArticleCASPubMed Google Scholar
Cooper, A. & Dryden, D. T. F. Allostery without conformational change. Eur. Biophys. J.11, 103–109 (1984)The first explicit articulation of dynamic allostery, demonstrating the theoretical relevance of an entirely entropic energetic contribution to biological function. ArticleCASPubMed Google Scholar
Sekhar, A. & Kay, L. E. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc. Natl Acad. Sci. USA110, 12867–12874 (2013) ArticleADSCASPubMedPubMed Central Google Scholar
Wand, A. J. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Curr. Opin. Struct. Biol.23, 75–81 (2013) ArticleCASPubMed Google Scholar
Manley, G., Rivalta, I. & Loria, J. P. Solution NMR and computational methods for understanding protein allostery. J. Phys. Chem. B117, 3063–3073 (2013) ArticleCASPubMedPubMed Central Google Scholar
Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry45, 6873–6888 (2006) ArticleCASPubMed Google Scholar
Uversky, V. N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol.43, 1090–1103 (2011) ArticleCASPubMed Google Scholar
Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit.18, 343–384 (2005) ArticleCASPubMed Google Scholar
Wright, P. E. Intrinsically unstructured proteins: re-assessing the structure-function paradigm. J. Mol. Biol.293, 321–331 (1999) ArticleCASPubMed Google Scholar
Hilser, V. J. & Thompson, E. B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl Acad. Sci. USA104, 8311–8315 (2007)The first paper to propose and demonstrate that intrinsic disorder can be used by proteins to mediate allosteric coupling. ArticleADSCASPubMedPubMed Central Google Scholar
Luque, I. & Freire, E. Structural parameterization of the binding enthalpy of small ligands. Proteins49, 181–190 (2002) ArticleCASPubMed Google Scholar
Li, Z., Raychaudhuri, S. & Wand, A. J. Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci.5, 2647–2650 (1996) ArticleCASPubMedPubMed Central Google Scholar
Yang, D. & Kay, L. E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol.263, 369–382 (1996) ArticleCASPubMed Google Scholar
Igumenova, T. I., Frederick, K. K. & Wand, A. J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev.106, 1672–1699 (2006) ArticleCASPubMedPubMed Central Google Scholar
Jarymowycz, V. A. & Stone, M. J. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev.106, 1624–1671 (2006) ArticleCASPubMed Google Scholar
Frederick, K. K., Marlow, M. S., Valentine, K. G. & Wand, A. J. Conformational entropy in molecular recognition by proteins. Nature448, 325–329 (2007) ArticleADSCASPubMedPubMed Central Google Scholar
Lee, A. L., Kinnear, S. A. & Wand, A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin–peptide complex. Nature Struct. Biol.7, 72–77 (2000) ArticleCASPubMed Google Scholar
Palmer, A. G., Kroenke, C. D. & Loria, J. P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol.339, 204–238 (2001) ArticleCASPubMed Google Scholar
Marlow, M. S., Dogan, J., Frederick, K. K., Valentine, K. G. & Wand, A. J. The role of conformational entropy in molecular recognition by calmodulin. Nature Chem. Biol.6, 352–358 (2010) ArticleCAS Google Scholar
Igumenova, T. I., Lee, A. L. & Wand, A. J. Backbone and side chain dynamics of mutant calmodulin–peptide complexes. Biochemistry44, 12627–12639 (2005) ArticleCASPubMed Google Scholar
Laine, O., Streaker, E. D., Nabavi, M., Fenselau, C. C. & Beckett, D. Allosteric signaling in the biotin repressor occurs via local folding coupled to global dampening of protein dynamics. J. Mol. Biol.381, 89–101 (2008) ArticleCASPubMedPubMed Central Google Scholar
Rodgers, T. L. et al. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors. PLoS Biol.11, e1001651 (2013) ArticleCASPubMedPubMed Central Google Scholar
Schrank, T. P., Bolen, D. W. & Hilser, V. J. Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins. Proc. Natl Acad. Sci. USA106, 16984–16989 (2009) ArticleADSCASPubMedPubMed Central Google Scholar
Gao, J. & Xu, D. Correlation between posttranslational modification and intrinsic disorder in protein. Pac. Symp. Biocomput. 94–103 (2012)
Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA103, 8390–8395 (2006) ArticleADSCASPubMedPubMed Central Google Scholar
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science254, 1598–1603 (1991) ArticleADSCASPubMed Google Scholar
Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nature Struct. Biol.4, 10–19 (1997) ArticleCASPubMed Google Scholar
Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem.48, 545–600 (1997) ArticleADSCASPubMed Google Scholar
Pan, H., Lee, J. C. & Hilser, V. J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl Acad. Sci. USA97, 12020–12025 (2000) ArticleADSCASPubMedPubMed Central Google Scholar
Bray, D. & Duke, T. A. Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct.33, 53–73 (2004) ArticleCASPubMed Google Scholar
Luque, I., Leavitt, S. A. & Freire, E. The linkage between protein folding and functional cooperativity: two sides of the same coin? Annu. Rev. Biophys. Biomol. Struct.31, 235–256 (2002) ArticleCASPubMed Google Scholar
Ackers, G. K., Johnson, A. D. & Shea, M. A. Quantitative model for gene regulation by the lambda phage repressor. Proc. Natl Acad. Sci. USA79, 1129–1133 (1982) ArticleADSCASPubMedPubMed Central Google Scholar
Bai, F. et al. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science327, 685–689 (2010) ArticleADSCASPubMed Google Scholar
Gekko, K., Obu, N., Li, J. & Lee, J. C. A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange. Biochemistry43, 3844–3852 (2004) ArticleCASPubMed Google Scholar
Fisher, C. K. & Stultz, C. M. Constructing ensembles for intrinsically disordered proteins. Curr. Opin. Struct. Biol.21, 426–431 (2011) ArticleCASPubMedPubMed Central Google Scholar
Forman-Kay, J. D. & Mittag, T. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure21, 1492–1499 (2013) ArticleCASPubMedPubMed Central Google Scholar
Mittag, T. & Forman-Kay, J. D. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol.17, 3–14 (2007) ArticleCASPubMed Google Scholar
Bernadó, P. et al. A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc. Natl Acad. Sci. USA102, 17002–17007 (2005) ArticleADSPubMedPubMed CentralCAS Google Scholar
Jensen, M. R. et al. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure17, 1169–1185 (2009) ArticleCASPubMed Google Scholar
Cavalli, A., Salvatella, X., Dobson, C. M. & Vendruscolo, M. Protein structure determination from NMR chemical shifts. Proc. Natl Acad. Sci. USA104, 9615–9620 (2007) ArticleADSCASPubMedPubMed Central Google Scholar
Clore, G. M. Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement. Mol. Biosyst.4, 1058–1069 (2008) ArticleCASPubMedPubMed Central Google Scholar
Lindorff-Larsen, K., Best, R. B., Depristo, M. A., Dobson, C. M. & Vendruscolo, M. Simultaneous determination of protein structure and dynamics. Nature433, 128–132 (2005) ArticleADSCASPubMed Google Scholar
Tang, C., Louis, J. M., Aniana, A., Suh, J. Y. & Clore, G. M. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature455, 693–696 (2008) ArticleADSCASPubMedPubMed Central Google Scholar
Fraser, J. S. et al. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc. Natl Acad. Sci. USA108, 16247–16252 (2011) ArticleADSCASPubMedPubMed Central Google Scholar
Burnley, T. B., Afonine, P. V., Adams, P. D. & Gros, P. Modelling dynamics in protein crystal structures by ensemble refinement. eLife1, e00311 (2012) ArticlePubMedPubMed CentralCAS Google Scholar
Penczek, P. A., Kimmel, M. & Spahn, C. M. T. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure19, 1582–1590 (2011) ArticleCASPubMedPubMed Central Google Scholar
Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys.41, 429–452 (2012) ArticleCASPubMed Google Scholar
Dror, R. O. et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature503, 295–299 (2013) ArticleADSCASPubMed Google Scholar
Qian, H. Cyclic conformational modification of an enzyme: serial engagement, energy relay, hysteretic enzyme, and Fischer’s hypothesis. J. Phys. Chem. B114, 16105–16111 (2010) ArticleCASPubMed Google Scholar
Andreeva, A. et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res.36, D419–D425 (2008) ArticleCASPubMed Google Scholar
Cesareni, G., Gimona, M., Sudol, M. & Yaffe, M. Modular Protein Domains (Wiley-VCH, 2005) Google Scholar
Choi, J. H., San, A. & Ostermeier, M. Non-allosteric enzyme switches possess larger effector-induced changes in thermodynamic stability than their non-switch analogs. Protein Sci.22, 475–485 (2013) ArticleCASPubMedPubMed Central Google Scholar
Zayner, J. P., Antoniou, C., French, A. R., Hause, R. J., Jr & Sosnick, T. R. Investigating models of protein function and allostery with a widespread mutational analysis of a light activated protein. Biophys. J.105, 1027–1036 (2013) ArticleADSCASPubMedPubMed Central Google Scholar