Koonin, E. V. & Yutin, N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb. Perspect. Biol.6, a016188 (2014) ArticleCASPubMedPubMed Central Google Scholar
Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol.48, 373–396 (2013) ArticleCASPubMedPubMed Central Google Scholar
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA74, 5088–5090 (1977) ArticleCASADSPubMedPubMed Central Google Scholar
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA87, 4576–4579 (1990) ArticleCASADSPubMedPubMed Central Google Scholar
Pühler, G. et al. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc. Natl Acad. Sci. USA86, 4569–4573 (1989) ArticleADSPubMedPubMed Central Google Scholar
Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science273, 1058–1073 (1996) ArticleCASADSPubMed Google Scholar
Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA95, 6239–6244 (1998) ArticleCASADSPubMedPubMed Central Google Scholar
McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nature Rev.Microbiol.. 12, 449–455 (2014)
Gribaldo, S., Poole, A. M., Daubin, V., Forterre, P. & Brochier-Armanet, C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nature Rev.Microbiol.. 8, 743–752 (2010)
Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. The deep archaeal roots of eukaryotes. Mol.Biol.Evol.. 25, 1619–1630 (2008)
Rochette, N. C., Brochier-Armanet, C. & Gouy, M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol.Biol.Evol.. 31, 832–845 (2014)
Thiergart, T., Landan, G., Schenk, M., Dagan, T. & Martin, W. F. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol.Evol.. 4, 466–485 (2012)
Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature331, 184–186 (1988) ArticleCASADSPubMed Google Scholar
Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature504, 231–236 (2013)
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc.Natl Acad.Sci.. USA105, 20356–20361 (2008)
Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil.Trans.R.Soc.Lond.. B364, 2197–2207 (2009)
Guy, L., Saw, J. H. & Ettema, T. J. The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb.Perspect.Biol.6, a016022. (2014)
Lasek-Nesselquist, E. & Gogarten, J. P. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol.Phylogenet.Evol.. 69, 17–38 (2013)
Williams, T. A., Foster, P. G., Nye, T. M., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc.R.Soc.Lond.. B279, 4870–4879 (2012)
Guy, L. & Ettema, T. J. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol.19, 580–587 (2011) ArticleCASPubMed Google Scholar
Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc.Natl Acad.Sci.. USA99, 1420–1425 (2002)
Ettema, T. J., Lindås, A.-C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol.Microbiol.. 80, 1052–1061 (2011)
Yutin, N. & Koonin, E. V. Archaeal origin of tubulin. Biol. Direct7, 10 (2012)
Lindås, A.-C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc.Natl Acad.Sci.. USA105, 18942–18946 (2008)
Martijn, J. & Ettema, T. J. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem.Soc.Trans.. 41, 451–457 (2013)
Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat.Commun.. 1, 126 (2010)
Jørgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc.Natl Acad.Sci.. USA109, E2846–E2855 (2012) ArticleCASADS Google Scholar
Jørgensen, S. L., Thorseth, I. H., Pedersen, R. B., Baumberger, T. & Schleper, C. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front. Microbiol.4, 299 (2013) ArticlePubMedPubMed Central Google Scholar
Inagaki, F. et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol.69, 7224–7235 (2003) ArticleCASPubMedPubMed Central Google Scholar
Vetriani, C., Jannasch, H. W., MacGregor, B. J., Stahl, D. A. & Reysenbach, A. L. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol.65, 4375–4384 (1999) CASPubMedPubMed Central Google Scholar
Von Schnurbein, S. The function of Loki in Snorri Sturluson’s Edda. Hist. Relig.40, 109–124 (2000) Article Google Scholar
Deschamps, P., Zivanovic, Y., Moreira, D., Rodriguez-Valera, F. & Lopez-Garcia, P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol.Evol.. 6, 1549–1563 (2014)
Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature517, 77–80 (2015) ArticleCASADSPubMed Google Scholar
Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct4, 9 (2009)
Kawai, M. et al. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes. Front. Microbiol.5, 80 (2014) ArticlePubMedPubMed Central Google Scholar
Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science326, 1208–1212 (2009)
Bernander, R., Lind, A. E. & Ettema, T. J. An archaeal origin for the actin cytoskeleton: Implications for eukaryogenesis. Commun. Integr. Biol.4, 664–667 (2011) ArticleCASPubMedPubMed Central Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell112, 453–465 (2003) ArticleCASPubMed Google Scholar
Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev.81, 153–208 (2001) ArticleCASPubMed Google Scholar
Zhang, Y., Franco, M., Ducret, A. & Mignot, T. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol. 8, e1000430 (2010)
Hurley, J. H. The ESCRT complexes. Crit.Rev.Biochem.Mol.Biol.. 45, 463–487 (2010)
Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr.Opin.Cell Biol.. 21, 4–13 (2009)
Leung, K. F., Dacks, J. B. & Field, M. C. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic9, 1698–1716 (2008)
Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature458, 445–452 (2009)
Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011) ArticleCASPubMedPubMed Central Google Scholar
Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb.Perspect.Biol.6, a015990. (2014)
Jorgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc.Natl Acad.Sci.. USA109, E2846–E2855 (2012) ArticleCASADS Google Scholar
Jorgensen, S. L., Thorseth, I. H., Pedersen, R. B., Baumberger, T. & Schleper, C. Quantitative and phylogenetic study of the deep sea archaeal group in sediments of the Arctic Mid-Ocean spreading ridge. Front. Microbiol.4, 299 (2013) ArticlePubMedPubMed Central Google Scholar
Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol.180, 366–376 (1998) CASPubMedPubMed Central Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014)
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402 (1997) ArticleCASPubMedPubMed Central Google Scholar
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods10, 996–998 (2013) ArticleCASPubMed Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200 (2011)
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl.Environ.Microbiol.. 75, 7537–7541 (2009) ArticleCASPubMedPubMed Central Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013) ArticleCASPubMedPubMed Central Google Scholar
Durbin, A. M. & Teske, A. Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front. Microbiol.3, 168 (2012) ArticlePubMedPubMed Central Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol.Biol.Evol.. 30, 772–780 (2013)
Capella-Gutiérrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009)
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313 (2014) ArticleCASPubMedPubMed Central Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478 (2011)
Pruesse, E., Peplies, J. & Glockner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28, 1823–1829 (2012)
Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol.Biol.Evol.. 27, 221–224 (2010)
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26, 2460–2461 (2010) ArticleCASPubMed Google Scholar
Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics26, 1669–1670 (2010)
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res.25, 955–964 (1997) ArticleCASPubMedPubMed Central Google Scholar
Sugahara, J. et al. SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level. In Silico Biol.6, 411–418 (2006) CASPubMed Google Scholar
Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct7, 46 (2012)
Kristensen, D. M. et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics26, 1481–1487 (2010) ArticleCASPubMedPubMed Central Google Scholar
Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst.Biol.. 62, 611–615 (2013)
Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics26, 1569–1571 (2010)
Viklund, J., Ettema, T. J. & Andersson, S. G. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol.Biol.Evol.. 29, 599–615 (2012)
Guy, L., Saw, J. H. & Ettema, T. J. The Archaeal Legacy of Eukaryotes: A Phylogenomic Perspective. Cold Spring Harb.Perspect.Biol.. 6, a016022 (2014)
Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst.Biol.. 51, 492–508 (2002) ArticlePubMed Google Scholar
Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics17, 1246–1247 (2001) ArticleCASPubMed Google Scholar
Guy, L., Spang, A., Saw, J. H. & Ettema, T. J. ‘Geoarchaeote NAG1’ is a deeply rooting lineage of the archaeal order Thermoproteales rather than a new phylum. ISME J.8, 1353–1357 (2014) ArticleCASPubMedPubMed Central Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (2014)
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002) BookMATH Google Scholar
Brady, A. & Salzberg, S. L. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nature Methods6, 673–676 (2009)
Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature499, 431–437 (2013) ArticleCASADSPubMed Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009)
Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007)
Zdobnov, E. M. & Apweiler, R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics17, 847–848 (2001) ArticleCASPubMed Google Scholar
Kawai, M. et al. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes. Front. Microbiol.5, 80 (2014) ArticlePubMedPubMed Central Google Scholar
Morono, Y., Terada, T., Hoshino, T. & Inagaki, F. Hot-alkaline DNA extraction method for deep-subseafloor archaeal communities. Appl.Environ.Microbiol.. 80, 1985–1994 (2014)
Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Rev.Microbiol.. 8, 731–741 (2010)
Dong, J. H., Wen, J. F. & Tian, H. F. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs. Gene396, 116–124 (2007)
Ettema, T. J., Lindas, A. C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol.Microbiol.. 80, 1052–1061 (2011)
Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct4, 9 (2009)
Goodson, H. V. & Hawse, W. F. Molecular evolution of the actin family. J. Cell Sci.115, 2619–2622 (2002) CASPubMed Google Scholar
Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature462, 1056–1060 (2009)
Guy, L., Roat Kultima, J. & Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in R. Bioinformatics26, 2334–2335 (2010) ArticleCASPubMedPubMed Central Google Scholar