Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer (original) (raw)
Accession codes
Primary accessions
Gene Expression Omnibus
Data deposits
RNA-seq data have been deposited in NCBI Gene Expression Omnibus (GEO) under accession number GSE79256.
References
- Gavrilovic, I. T. & Posner, J. B. Brain metastases: epidemiology and pathophysiology. J. Neurooncol. 75, 5–14 (2005)
Article PubMed Google Scholar - Stelzer, K. J. Epidemiology and prognosis of brain metastases. Surg. Neurol. Int. 4, S192–S202 (2013)
Article PubMed PubMed Central Google Scholar - Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009)
Article ADS CAS PubMed PubMed Central Google Scholar - Eichler, A. F. et al. The biology of brain metastases-translation to new therapies. Nature Rev. Clin. Oncol. 8, 344–356 (2011)
Article CAS Google Scholar - Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Med. 16, 116–122 (2010)
Article CAS PubMed Google Scholar - Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014)
Article CAS PubMed PubMed Central Google Scholar - Giaume, C., Koulakoff, A., Roux, L., Holcman, D. & Rouach, N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nature Rev. Neurosci. 11, 87–99 (2010)
Article CAS Google Scholar - Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010)
Article PubMed Google Scholar - Kim, S. J. et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13, 286–298 (2011)
Article CAS PubMed PubMed Central Google Scholar - Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013)
Article ADS CAS PubMed Google Scholar - Theis, M. & Giaume, C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res. 1487, 88–98 (2012)
Article CAS PubMed Google Scholar - Nguyen, D. X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009)
Article CAS PubMed PubMed Central Google Scholar - Winslow, M. M. et al. Suppression of lung adenocarcinoma progression by Nkx2–1. Nature 473, 101–104 (2011)
Article ADS CAS PubMed PubMed Central Google Scholar - Oshima, A. Structure and closure of connexin gap junction channels. FEBS Lett. 588, 1230–1237 (2014)
Article CAS PubMed Google Scholar - Yoshida, K., Yoshitomo-Nakagawa, K., Seki, N., Sasaki, M. & Sugano, S. Cloning, expression analysis, and chromosomal localization of BH-protocadherin (PCDH7), a novel member of the cadherin superfamily. Genomics 49, 458–461 (1998)
Article CAS PubMed Google Scholar - Kim, S. Y., Chung, H. S., Sun, W. & Kim, H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience 147, 996–1021 (2007)
Article CAS PubMed Google Scholar - Gaspar, L. E. et al. Time from treatment to subsequent diagnosis of brain metastases in stage III non-small-cell lung cancer: a retrospective review by the Southwest Oncology Group. J. Clin. Oncol. 23, 2955–2961 (2005)
Article PubMed Google Scholar - Gaspar, L. E., Scott, C., Murray, K. & Curran, W. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 47, 1001–1006 (2000)
Article CAS PubMed Google Scholar - Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169–1180 (2000)
CAS PubMed Google Scholar - Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015)
Article ADS CAS PubMed Google Scholar - Sin, W. C. et al. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene 35, 1504–1516 (2015)
Article PubMed CAS Google Scholar - Luker, K. E. et al. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Natl Acad. Sci. USA 101, 12288–12293 (2004)
Article ADS CAS PubMed PubMed Central Google Scholar - Beahm, D. L. et al. Mutation of a conserved threonine in the third transmembrane helix of α- and β-connexins creates a dominant-negative closed gap junction channel. J. Biol. Chem. 281, 7994–8009 (2006)
Article CAS PubMed Google Scholar - Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008)
Article CAS PubMed PubMed Central Google Scholar - Boehm, J. S. et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079 (2007)
Article CAS PubMed Google Scholar - Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014)
Article CAS PubMed Google Scholar - Stetson, D. B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006)
Article CAS PubMed Google Scholar - Harks, E. G. et al. Fenamates: a novel class of reversible gap junction blockers. J. Pharmacol. Exp. Ther. 298, 1033–1041 (2001)
CAS PubMed Google Scholar - Jin, M. et al. Effects of meclofenamic acid on limbic epileptogenesis in mice kindling models. Neurosci. Lett. 543, 110–114 (2013)
Article CAS PubMed Google Scholar - Chan, W. N. et al. Identification of (−)-_cis_-6-acetyl-4_S_-(3-chloro-4-fluoro-benzoylamino)-3,4-dihydro-2,2-dimethyl-2_H_-benzo[b]pyran-3_S_-ol as a potential antimigraine agent. Bioorg. Med. Chem. Lett. 9, 285–290 (1999)
Article CAS PubMed Google Scholar - Herdon, H. J. et al. Characterization of the binding of [3H]-SB-204269, a radiolabelled form of the new anticonvulsant SB-204269, to a novel binding site in rat brain membranes. Br. J. Pharmacol. 121, 1687–1691 (1997)
Article CAS PubMed PubMed Central Google Scholar - Read, S. J., Smith, M. I., Hunter, A. J., Upton, N. & Parsons, A. A. SB-220453, a potential novel antimigraine agent, inhibits nitric oxide release following induction of cortical spreading depression in the anaesthetized cat. Cephalalgia 20, 92–99 (2000)
Article CAS PubMed Google Scholar - Damodaram, S., Thalakoti, S., Freeman, S. E., Garrett, F. G. & Durham, P. L. Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling. Headache 49, 5–20 (2009)
Article PubMed PubMed Central Google Scholar - Deeken, J. F. & Loscher, W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13, 1663–1674 (2007)
Article CAS PubMed Google Scholar - Pitz, M. W., Desai, A., Grossman, S. A. & Blakeley, J. O. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J. Neurooncol. 104, 629–638 (2011)
Article CAS PubMed PubMed Central Google Scholar - Lim, E. & Lin, N. U. Updates on the management of breast cancer brain metastases. Oncology 28, 572–578 (2014)
PubMed Google Scholar - Taimur, S. & Edelman, M. J. Treatment options for brain metastases in patients with non-small-cell lung cancer. Curr. Oncol. Rep. 5, 342–346 (2003)
Article PubMed Google Scholar - Hirano, S., Suzuki, S. T. & Redies, C. The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front. Biosci. 8, d306–d355 (2003)
Article CAS PubMed Google Scholar - Patel, S. J., King, K. R., Casali, M. & Yarmush, M. L. DNA-triggered innate immune responses are propagated by gap junction communication. Proc. Natl Acad. Sci. USA 106, 12867–12872 (2009)
Article ADS CAS PubMed PubMed Central Google Scholar - Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013)
Article ADS CAS PubMed PubMed Central Google Scholar - Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 112, 15408–15413 (2015)
Article ADS CAS PubMed PubMed Central Google Scholar - Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014)
Article CAS PubMed PubMed Central Google Scholar - Sauer, J. D. et al. The _N_-ethyl-_N_-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79, 688–694 (2011)
Article CAS PubMed Google Scholar - Zhang, X. H. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–1073 (2013)
Article CAS PubMed PubMed Central Google Scholar - Wilson, A. A. et al. Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression in mouse lung macrophages. Mol. Ther. 21, 825–833 (2013)
Article CAS PubMed PubMed Central Google Scholar - Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols 8, 1765–1786 (2013)
Article PubMed CAS Google Scholar - Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013)
Article PubMed PubMed Central CAS Google Scholar - Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)
Article PubMed PubMed Central CAS Google Scholar - Gatza, M. L. et al. A pathway-based classification of human breast cancer. Proc. Natl Acad. Sci. USA 107, 6994–6999 (2010)
Article ADS CAS PubMed PubMed Central Google Scholar - Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005)
Article ADS CAS PubMed PubMed Central Google Scholar - Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003)
Article CAS PubMed Google Scholar
Acknowledgements
We thank D. Macalinao and other members of the Massagué laboratory for discussions. This work was supported by NIH grants P01-CA129243, U54-163167 and P30 CA008748, DOD Innovator award W81XWH-12-0074, the Alan and Sandra Gerry Metastasis Research Initiative (J.M.), the MSKCC Clinical Scholars Training Program (A.B.), the Solomon R. and Rebecca D. Baker Foundation (A.B), and by the Susan G. Komen Organization (X.J.).
Author information
Author notes
- Qing Chen, Xin Jin, Manuel Valiente, Alejandro Lopez-Soto & Leni S. Jacob
Present address: † Present addresses: The Wistar Institute 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA (Q.C.); Cancer Program, The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts 02142, USA (X.J.); Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain (M.V.); Department of Functional Biology IUOPA, University of Oviedo, Facultad de Medicina, 33006 Oriedo, Spain (A.L.-S.); Department of Genetics, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 417, Boston, Massachusetts 02115, USA (L.J.)., - Qing Chen and Adrienne Boire: These authors contributed equally to this work.
Authors and Affiliations
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065, New York, USA
Qing Chen, Adrienne Boire, Xin Jin, Manuel Valiente, Ekrem Emrah Er, Alejandro Lopez-Soto, Leni S. Jacob, Ruzeen Patwa & Joan Massagué - Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, 10065, New York, USA
Adrienne Boire - Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, 10065, New York, USA
Hardik Shah & Justin R. Cross - Molecular Cytology Core Facility Memorial Sloan Kettering Cancer Center, New York,, 10065, New York, USA
Ke Xu
Authors
- Qing Chen
You can also search for this author inPubMed Google Scholar - Adrienne Boire
You can also search for this author inPubMed Google Scholar - Xin Jin
You can also search for this author inPubMed Google Scholar - Manuel Valiente
You can also search for this author inPubMed Google Scholar - Ekrem Emrah Er
You can also search for this author inPubMed Google Scholar - Alejandro Lopez-Soto
You can also search for this author inPubMed Google Scholar - Leni S. Jacob
You can also search for this author inPubMed Google Scholar - Ruzeen Patwa
You can also search for this author inPubMed Google Scholar - Hardik Shah
You can also search for this author inPubMed Google Scholar - Ke Xu
You can also search for this author inPubMed Google Scholar - Justin R. Cross
You can also search for this author inPubMed Google Scholar - Joan Massagué
You can also search for this author inPubMed Google Scholar
Contributions
Q.C., A.B. and J.M. conceptualized the project and designed the experiments. Q.C. and A.B. performed the experiments. X.J., M.V., E.E.E., A.L.-S., L.J. and R.P. assisted with the experiments and bioinformatics analysis. H.S. and J.R.C. performed the LC–MS/MS analysis, and K.X. the time-lapse confocal imaging. A.B., Q.C. and J.M. wrote the paper.
Corresponding author
Correspondence toJoan Massagué.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer Information Nature thanks R. Hynes and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Extended data figures and tables
Extended Data Figure 1 Cancer cell–astrocyte interactions.
a, Representative images and quantification of Cx43 immunostaining in matched primary and brain metastatic samples from patients with NSCLC. Scale bar, 100 μm (n = 8 patients). b, Cancer cells used in this study. The following references are cited in the table: 3, 6, 12, 13, 50 and 51. c, Astrocyte co-culture protects cancer cells. As illustrated in schema (left), cleaved caspase 3+ GFP+ apoptotic BrM cells were quantified by flow cytometery after sFasL addition or chemo-treatments (3 independent experiments). d, Flow cytometric quantification of dye transfer from astrocytes to MDA231-BrM2 cells over time (3 independent experiments).
Extended Data Figure 2 Increased expression of Cx43 and PCDH7 in brain metastatic cancer cells and astrocytes.
a, CX43 and PCDH7 mRNA in parental and BrM cells. Data are mean ± s.e.m. (n = 3 independent experiments in triplicate). b, Cx43 and PCDH7 western blotting in ErbB2 parental and brain metastatic cells, as well as Kras/p53 cell lines (n = 3 independent experiments). c, CX26 and CX30 mRNA in MDA231 parental cell lines and the metastatic derivatives of brain (BrM2), lung (LM) and bone (BoM). d, CX43 and PCDH7 mRNA in BrM cells compared to brain cells (n = 3 independent experiments). e, Kaplan–Meier plot illustrates the probability of cumulative metastasis-free survival in 63 cases (GSE8893) of lung adenocarcinoma based on CX43 and PCDH7 expression in the primary tumour. f, g, Knockdown of Cx43 and PCDH7 with shRNAs as assessed by reverse transcriptase PCR (RT–PCR) (f) and western blotting (g). Data are mean ± s.e.m. (n = 3 independent experiments in triplicate).
Extended Data Figure 3 PCDH7 facilitates gap junction communication.
a, b, Histograms and quantification of dye transfer from astrocytes to control and Cx43- or PCDH7-depleted Kras/p53-393N1 cells (a), and from astrocytes to control or Cx43-depleted MDA231-BrM2 cells, in comparison to carbenoxolone (50 μM) treatment (b). c, d, PCDH7 in astrocytes facilitate gap junctions. c, PCDH7 immunoblotting of control or PCDH7-depleted astrocytes. d, Quantification of dye transfer from MDA231-BrM2 cells to PCDH7-depleted astrocytes (d). e, Quantification of dye transfer from HBMECs to control, Cx43- or PCDH7-depleted MDA231-BrM2 cells. f, Dye transfer from MDA231-BrM2 cells to a mixed population of astrocytes and HBMECs. g, Quantification of dye transfer from control or Cx43-depleted MDA231-BrM2 cells to human microglia. For dye transfer assays, values are mean ± s.e.m. (n = ≥2 independent experiments in triplicate).
Extended Data Figure 4 Cx43 directly interacts with PCDH7, but not with E-cadherin or N-cadherin.
a, Schema illustrating split luciferase assay. Fusion constructs of PCDH7 and Cx43 were created with either NLuc or CLuc. When these proteins are brought into proximity, luciferase is functionally reconstituted, producing photons of light. b, Cx43 and PCDH7 constructs fused with NLuc and CLuc were expressed in parental cell lines. The table (top) numerically identifies the cell line combinations used in the assays (bottom), and BLI of a representative plate. c, Cx43 and PCDH7 western immunoblotting in cancer cells overexpressing fusion proteins. d, Quantification of BLI after co-culture of Cx43-CLuc and PCDH7-NLuc cancer cells and astrocytes for 15 min (3 independent experiments) e–g, Luciferase split assay to detect Cx43–E-cadherin or Cx43–N-cadherin interactions. Cell line combinations used in the assays are numerically identified in the table (e), and confirmed by western immunoblotting (f). g, BLI of a representative assay plate; cell line combinations are indicated numerically (n ≥ 2 independent experiments in e–g).
Extended Data Figure 5 Inhibition of gap junction activity prevents brain metastatic outgrowth.
a, BLI quantification of brain metastatic lesions formed by control, Cx43- or PCDH7-depleted H2030-BrM3 cells (n = 2 independent experiments with 9 mice total per group). b, Representative images of GFP+ brain metastatic lesions formed by control, Cx43- or PCDH7-depleted MDA231-BrM2 cells. Brain sections or brain metastatic lesions are delineated by dotted white or red lines, respectively. Scale bars, 1,000 μm. c, BLI (images) and quantification (bar graph) of lung metastatic lesions formed by MDA231-BrM2 cells. Values are mean ± s.e.m. (n = 2 independent experiments with 5 mice total in each group). d, e, Gap-junction-mediated brain metastasis requires channel function of Cx43. Wild-type or T154A mutant Cx43 was re-expressed in Cx43-depleted (CX43 sh2) MDA231-BrM2 cells. Cx43 expression was detected by western blotting (d), and brain metastasis formed by these cells was quantified by BLI (e) (n = 2 independent experiments with 10 mice total per group).
Extended Data Figure 6 Cx43 and PCDH7 do not mediate early events of extravasation and vascular co-option in brain metastasis.
a, Cx43 and PCDH7 do not mediate trans-BBB migration. Quantification of control, Cx43- or PCDH7-depleted MDA231-BrM2 cells in 7-day brain lesions was carried out as follows: at the indicated time point, mice were euthanized, brains were sectioned, 10% of the sections were immunostained, and all GFP+ cells in these sections were counted. Data are mean ± s.e.m. (n = 5 brains in each group). b, Cx43 and PCDH7 mediate cancer cell colonization in 14-day brain lesions. Sectioning and staining were carried out as described in a. Representative images are GFP (green) and Ki67 (red) staining. DAPI, nuclear staining. Scale bar, 20 μm. Bar graph is the proportion of Ki67+ cancer cells. Data are mean ± s.e.m. (n = 5 brains in each group). c, Cx43 and PCDH7 mediate cancer cell survival. MDA231-BrM2 cells expressing CX43 shRNA, PCDH7 shRNA or control shRNA were deposited onto living brain sections, five brain slices were seeded with cancer cells of each type. After 48 h, slices were fixed and stained for GFP (green) and cleaved caspase 3 (Casp3) (red) staining. Representative images are shown. Scale bar, 30 μm. After staining, all GFP+ cells were counted on each slice. GFP+ cells with caspase 3+ staining were scored as ‘apoptotic’. Histogram shows proportion of caspase 3+ apoptotic cancer cells. Data are mean ± s.e.m. (n = 5 brain slices in each group). d, Cx43 and PCDH7 do not affect vascular co-option of cancer cells in 14-day brain lesions. Representative images are GFP (green) staining and vascular structure filled with TRITC dextran (red). Scale bar, 20 μm (n = 2 independent experiments).
Extended Data Figure 7 TRAP after cancer cell astrocyte co-culture.
a, Schematic illustration of TRAP experimental set up to isolate translating mRNA from MDA231-BrM2 cells under three conditions (1, 2 and 3). b, Principle component (PC) analysis of TRAP mRNA sequencing. c, Scatter plot of log2 fold changes regulated by astrocytes and gap junction communications between BrM cells and astrocytes. d, STAT1 and NF-κB p65 phosphorylation in H2030-BrM3 cells after a 2 h incubation with conditioned media from astrocyte co-cultures. Conditioned media samples were collected after 24 h co-culture of astrocytes with control or Cx43-depleted H2030-BrM3 cells (n = 3 independent experiments).
Extended Data Figure 8 Gap-junction-generated signalling activates IFN and NF-κB pathways in cancer cells.
a, Cytokine array analysis of conditioned media collected after 24 h co-culture of human astrocytes with control or Cx43-depleted MDA231-BrM2 cells. The log2 fold changes are plotted. b, Schematic of co-culture conditioned media collection and human astrocyte re-isolation (left) ELISA of IFNα and TNF in conditioned media from astrocyte co-cultures with the indicated MDA231-BrM2 cells (right) Data are mean ± s.e.m. (n ≥ 2 independent experiments with 4 total replicates). c, Relative levels of cleaved caspase 3 in MDA231-BrM2 cells treated with various concentrations of carboplatin in the presence or absence of 10 U ml−1 (39 U ng−1) IFNα or 10 pg ml−1 TNF. Data are mean ± s.e.m. (n = 5 technical replicates over 3 independent experiments). d, STAT1 levels in control and STAT1-knockdown LLC-BrM and 393N1 cells. e, Quantification of BLI signal from brain metastases formed by syngeneic LLC-BrM control, or STAT1-knockdown cells (n = 2 independent experiments with 12–15 mice total per group). f, NF-κB Renilla luciferase reporter assay in MDA231-BrM cells expressing control pBABE or SR-IκBα vector. Data are mean ± s.e.m. (n = 3 technical replicates).
Extended Data Figure 9 Gap junctions initiate cytosolic DNA response in astrocytes.
a, Control or Cx43-depleted H2030-BrM3 cells were co-cultured for 18 h with/without astrocytes, and subjected to immunobloting analysis of phosphorylated TBK1 and IRF3 (n = 3 independent experiments). b, Immunoblot of mouse astrocytes depleted of STING with control (non-silencing) or Sting shRNAs. c, Mouse IFNα and TNF were quantified in the conditioned medium after co-culture by ELISA (n = 2 independent experiments with 3 replicates each). d, LLC-BrM growth in syngeneic C57Bl6 mice hosts wild-type (+/+) or knockout (−/−) for Sting. Bottom, diameter of brain metastases. Scale bar, 50 μm. Brains from all mice (n = 22) were sectioned, immunostained, and measured. All GFP+ brain metastases were quantified (2.8 ± 0.67 metastases per Sting+/+ mouse; 1.6 ± 0.55 in _Sting_−/− mice). e, Quantification of dsDNA in the indicated cellular fractions from 2 × 107 H2030-BrM3, MDA231-BrM2 or human astrocyte cells. Data are mean ± s.e.m. (n = 3 biological replicates; 2 independent experiments). f, Ratio of cytosolic dsDNA and nuclear dsDNA in indicated cancer cells and non-neoplastic cells. g, Representative image of immunofluorescent staining of dsDNA, GFP and CoxIV (a mitochondrial marker) in MDA231-BrM2 cells. h, cGAMP identification. The peak at 4.47 min contains all three selected reaction monitoring (SRM) transitions specific for cGAMP. AA, automatically integrated peak area; RT, retention time. i, j, EdU-labelled MDA231-BrM2 cells were co-cultured with astrocytes for 6 h. Transfer of EdU-labelled DNA from cancer cells to astrocytes was visualized using confocal microscopy (i), or quantified by flow cytometry (j). k, Immunoblot of H2030-BrM3 cells depleted of cGAS with shRNAs or control shRNA. l, Human astrocytes, were cultured for 18 h with/without H2030-BrM cells expressing control or cGAS shRNA. Human IFNα and TNF were quantified in the conditioned medium by ELISA (n = 2 independent experiments in triplicate). m, Quantification of BLI signal from brain metastases formed by H2030-BrM3 cells depleted of cGAS with two independent shRNAs (n = 2 independent experiments with 6 mice total per group).
Extended Data Figure 10 Inhibition of gap junction activity prevents brain metastatic outgrowth.
a–d, After treatment with tonabersat or meclofenamate (a), brain metastasis (b), primary tumour growth in mammary fat pads (c), or lung metastasis (d) was quantified by BLI. Data are mean ± s.e.m. (n = 2 independent experiments with 10 mice total in each group). e, Human astrocytes were treated with 200 μM tonabersat or 100 μM meclofenamate for 12 h before transfection with cGAMP (4 μg ml−1) using Lipofectamine 2000 or Lipofectamine alone. Conditioned media was collected 18 h later and assayed for human TNF and IFNα by ELISA (n = 2 biological replicates). f, g, Knockdown of Cx43 and PCDH7 in MDA231-BrM2 cells with tet-on inducible shRNA as assessed by RT–PCR (f) and western blotting (g), after doxycycline treatment in vitro (n = 2 independent experiments). h, Brain ex vivo BLI 14 days after inoculation of MDA231-BrM2 cells (n = 10 mice).
Supplementary information
Supplementary Table 1
The file shows the target sequences of shRNAs. (PDF 3697 kb)
Dye transfer from MDA231-BrM2 cells and astrocytes
MDA231-BrM2 cells with Calcein Red-Orange dye. A single-cell suspension of labeled cancer cells was added to the monolayer cultured astrocytes. Bright field and red fluorescent images in the same region were captured every 20 minutes. (MOV 5272 kb)
PowerPoint slides
Source data
Rights and permissions
About this article
Cite this article
Chen, Q., Boire, A., Jin, X. et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer.Nature 533, 493–498 (2016). https://doi.org/10.1038/nature18268
- Received: 09 September 2015
- Accepted: 12 April 2016
- Published: 18 May 2016
- Issue Date: 26 May 2016
- DOI: https://doi.org/10.1038/nature18268