Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy (original) (raw)
References
Chudakov, D.M., Chepurnykh, T.V., Belousov, V.V., Lukyanov, S. & Lukyanov, K.A. Fast and precise protein tracking using repeated reversible photoactivation. Traffic7, 1304–1310 (2006). ArticleCAS Google Scholar
Hell, S.W., Jakobs, S. & Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A77, 859–860 (2003). ArticleCAS Google Scholar
Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S.W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA102, 17565–17569 (2005). ArticleCAS Google Scholar
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science313, 1642–1645 (2006). ArticleCAS Google Scholar
Dedecker, P. et al. Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J. Am. Chem. Soc.129, 16132–16141 (2007). ArticleCAS Google Scholar
Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J.93, 3285–3290 (2007). ArticleCAS Google Scholar
Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science306, 1370–1373 (2004). ArticleCAS Google Scholar
Ando, R., Flors, C., Mizuno, H., Hofkens, J. & Miyawaki, A. Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys. J.92, L97–L99 (2007). ArticleCAS Google Scholar
Stiel, A.C. et al. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J.402, 35–42 (2007). ArticleCAS Google Scholar
Henderson, J.N., Ai, H.W., Campbell, R.E. & Remington, S.J. Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc. Natl. Acad. Sci. USA104, 6672–6677 (2007). ArticleCAS Google Scholar
Kogure, T. et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol.24, 577–581 (2006). ArticleCAS Google Scholar
Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. & Campbell, R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry46, 5904–5910 (2007). ArticleCAS Google Scholar
Andresen, M. et al. Structural basis for reversible photoswitching in Dronpa. Proc. Natl. Acad. Sci. USA104, 13005–13009 (2007). ArticleCAS Google Scholar
Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA102, 9511–9516 (2005). ArticleCAS Google Scholar
Habuchi, S. et al. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem. Photobiol. Sci.5, 567–576 (2006). ArticleCAS Google Scholar
Chudakov, D.M., Feofanov, A.V., Mudriku, N.N., Lukyanov, S. & Lukyanov, K.A. Chromophore environment provides clue to “kindling fluorescent protein” riddle. J. Biol. Chem.278, 7215–7219 (2003). ArticleCAS Google Scholar
Andresen, M. et al. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc. Natl. Acad. Sci. USA102, 13070–13074 (2005). ArticleCAS Google Scholar
Juskaitis, R. & Wilson, T. A method for characterizing longitudinal chromatic aberration of microscope objectives using a confocal optical system. J. Microsc.195, 17–22 (1999). Article Google Scholar
Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol.125, 381–391 (1994). ArticleCAS Google Scholar
Wiedenmann, J. et al. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc. Natl. Acad. Sci. USA99, 11646–11651 (2002). ArticleCAS Google Scholar
Rust, M., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods3, 793–795 (2006). ArticleCAS Google Scholar
Schonle, A. & Hell, S.W. Fluorescence nanoscopy goes multicolor. Nat. Biotechnol.25, 1234–1235 (2007). Article Google Scholar
Bossi, M. et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett.8, 2463–2468 (2008). ArticleCAS Google Scholar
Drew, D.E., von Heijne, G., Nordlund, P. & de Gier, J.W. Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli . FEBS Lett.507, 220–224 (2001). ArticleCAS Google Scholar
Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J.73, 2782–2790 (1997). ArticleCAS Google Scholar
De Antoni, A. & Gallwitz, D. A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae . Gene246, 179–185 (2000). ArticleCAS Google Scholar