Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy (original) (raw)

References

  1. Chudakov, D.M., Chepurnykh, T.V., Belousov, V.V., Lukyanov, S. & Lukyanov, K.A. Fast and precise protein tracking using repeated reversible photoactivation. Traffic 7, 1304–1310 (2006).
    Article CAS Google Scholar
  2. Jares-Erijman, E.A. & Jovin, T.M. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).
    Article CAS Google Scholar
  3. Hell, S.W., Jakobs, S. & Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77, 859–860 (2003).
    Article CAS Google Scholar
  4. Hell, S.W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).
    Article CAS Google Scholar
  5. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S.W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
    Article CAS Google Scholar
  6. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
    Article CAS Google Scholar
  7. Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).
    Article CAS Google Scholar
  8. Dedecker, P. et al. Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J. Am. Chem. Soc. 129, 16132–16141 (2007).
    Article CAS Google Scholar
  9. Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).
    Article CAS Google Scholar
  10. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).
    Article CAS Google Scholar
  11. Ando, R., Flors, C., Mizuno, H., Hofkens, J. & Miyawaki, A. Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys. J. 92, L97–L99 (2007).
    Article CAS Google Scholar
  12. Stiel, A.C. et al. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402, 35–42 (2007).
    Article CAS Google Scholar
  13. Henderson, J.N., Ai, H.W., Campbell, R.E. & Remington, S.J. Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc. Natl. Acad. Sci. USA 104, 6672–6677 (2007).
    Article CAS Google Scholar
  14. Kogure, T. et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24, 577–581 (2006).
    Article CAS Google Scholar
  15. Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. & Campbell, R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007).
    Article CAS Google Scholar
  16. Andresen, M. et al. Structural basis for reversible photoswitching in Dronpa. Proc. Natl. Acad. Sci. USA 104, 13005–13009 (2007).
    Article CAS Google Scholar
  17. Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102, 9511–9516 (2005).
    Article CAS Google Scholar
  18. Habuchi, S. et al. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem. Photobiol. Sci. 5, 567–576 (2006).
    Article CAS Google Scholar
  19. Chudakov, D.M., Feofanov, A.V., Mudriku, N.N., Lukyanov, S. & Lukyanov, K.A. Chromophore environment provides clue to “kindling fluorescent protein” riddle. J. Biol. Chem. 278, 7215–7219 (2003).
    Article CAS Google Scholar
  20. Andresen, M. et al. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc. Natl. Acad. Sci. USA 102, 13070–13074 (2005).
    Article CAS Google Scholar
  21. Juskaitis, R. & Wilson, T. A method for characterizing longitudinal chromatic aberration of microscope objectives using a confocal optical system. J. Microsc. 195, 17–22 (1999).
    Article Google Scholar
  22. Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).
    Article CAS Google Scholar
  23. Wiedenmann, J. et al. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc. Natl. Acad. Sci. USA 99, 11646–11651 (2002).
    Article CAS Google Scholar
  24. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).
    Article CAS Google Scholar
  25. Rust, M., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
    Article CAS Google Scholar
  26. Schonle, A. & Hell, S.W. Fluorescence nanoscopy goes multicolor. Nat. Biotechnol. 25, 1234–1235 (2007).
    Article Google Scholar
  27. Bossi, M. et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett. 8, 2463–2468 (2008).
    Article CAS Google Scholar
  28. Drew, D.E., von Heijne, G., Nordlund, P. & de Gier, J.W. Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli . FEBS Lett. 507, 220–224 (2001).
    Article CAS Google Scholar
  29. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).
    Article CAS Google Scholar
  30. De Antoni, A. & Gallwitz, D. A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae . Gene 246, 179–185 (2000).
    Article CAS Google Scholar

Download references