Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 (original) (raw)
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012). ArticleCAS Google Scholar
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science339, 823–826 (2013). ArticleCAS Google Scholar
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013). ArticleCAS Google Scholar
Jinek, M. et al. RNA-programmed genome editing in human cells. eLife2, e00471 (2013). Article Google Scholar
Hartenian, E. & Doench, J.G. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J.282, 1383–1393 (2015). ArticleCAS Google Scholar
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science343, 84–87 (2014). ArticleCAS Google Scholar
Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science343, 80–84 (2014). ArticleCAS Google Scholar
Koike-Yusa, H., Li, Y., Tan, E.-P., Velasco-Herrera, Mdel.C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol.32, 267–273 (2014). ArticleCAS Google Scholar
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol.31, 822–826 (2013). ArticleCAS Google Scholar
Veres, A. et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell15, 27–30 (2014). ArticleCAS Google Scholar
Ran, F.A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell154, 1380–1389 (2013). ArticleCAS Google Scholar
Guilinger, J.P., Thompson, D.B. & Liu, D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol.32, 577–582 (2014). ArticleCAS Google Scholar
Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol.31, 827–832 (2013). ArticleCAS Google Scholar
Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol.32, 1262–1267 (2014). ArticleCAS Google Scholar
Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods11, 783–784 (2014). ArticleCAS Google Scholar
Whittaker, S.R. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov.3, 350–362 (2013). ArticleCAS Google Scholar
Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature467, 596–599 (2010). ArticleCAS Google Scholar
Johannessen, C.M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature468, 968–972 (2010). ArticleCAS Google Scholar
Davies, B.R. et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol. Cancer Ther.6, 2209–2219 (2007). ArticleCAS Google Scholar
Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA100, 9440–9445 (2003). ArticleCAS Google Scholar
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol.15, 554 (2014). Article Google Scholar
Lawrence, M.S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature505, 495–501 (2014). ArticleCAS Google Scholar
Bae, S. et al. TRIAD1 inhibits MDM2-mediated p53 ubiquitination and degradation. FEBS Lett.586, 3057–3063 (2012). ArticleCAS Google Scholar
Gamper, A.M. & Roeder, R.G. Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol. Cell. Biol.28, 2517–2527 (2008). ArticleCAS Google Scholar
Hart, T., Brown, K.R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol.10, 733 (2014). Article Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA102, 15545–15550 (2005). ArticleCAS Google Scholar
Wang, T. et al. Identification and characterization of essential genes in the human genome. Science350, 1096–1101 (2015). ArticleCAS Google Scholar
Brinkman, E.K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res.42, e168 (2014). Article Google Scholar
Zha, M. et al. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. J. Mol. Biol.379, 568–578 (2008). ArticleCAS Google Scholar
Cheok, M.H. & Evans, W.E. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat. Rev. Cancer6, 117–129 (2006). ArticleCAS Google Scholar
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature483, 603–607 (2012). ArticleCAS Google Scholar
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics27, 1739–1740 (2011). ArticleCAS Google Scholar
Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol.33, 661–667 (2015). ArticleCAS Google Scholar
Chari, R., Mali, P., Moosburner, M. & Church, G.M. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods12, 823–826 (2015). ArticleCAS Google Scholar
Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res.25, 1147–1157 (2015). ArticleCAS Google Scholar
Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science343, 1247997 (2014). Article Google Scholar
Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. & Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature507, 62–67 (2014). ArticleCAS Google Scholar
Bae, S., Kweon, J., Kim, H.S. & Kim, J.-S. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods11, 705–706 (2014). ArticleCAS Google Scholar
Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell159, 647–661 (2014). ArticleCAS Google Scholar
Lin, Y. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res.42, 7473–7485 (2014). ArticleCAS Google Scholar
Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J. & Mateo, J.L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One10, e0124633–e11 (2015). Article Google Scholar
Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol.33, 187–197 (2015). ArticleCAS Google Scholar
Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). ArticleCAS Google Scholar
Heigwer, F., Kerr, G. & Boutros, M. E-CRISP: fast CRISPR target site identification. Nat. Methods11, 122–123 (2014). ArticleCAS Google Scholar
Bae, S., Park, J., Kim, J.S. & Kim, J.S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics30, 1473–1475 (2014). ArticleCAS Google Scholar
Kampmann, M. et al. Next-generation libraries for robust RNA interference-based genome-wide screens. Proc. Natl. Acad. Sci. USA112, E3384–E3391 (2015). ArticleCAS Google Scholar
Steiger, J.H. Tests for comparing elements of a correlation matrix. Psychol. Bull.87, 245–251 (1980). Article Google Scholar
Blasi, E., Radzioch, D., Durum, S.K. & Varesio, L. A murine macrophage cell line, immortalized by v-raf and v-myc oncogenes, exhibits normal macrophage functions. Eur. J. Immunol.17, 1491–1498 (1987). ArticleCAS Google Scholar
Stansley, B., Post, J. & Hensley, K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. J. Neuroinflammation9, 115 (2012). Article Google Scholar
Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B. & Rätsch, G. Support vector machines and kernels for computational biology. PLoS Comput. Biol.4, e1000173 (2008). Article Google Scholar
Cock, P.J.A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics25, 1422–1423 (2009). ArticleCAS Google Scholar
Le Novère, N. MELTING, computing the melting temperature of nucleic acid duplex. Bioinformatics17, 1226–1227 (2001). Article Google Scholar
Steiger, J.H. Tests for comparing elements of a correlation matrix. Psychol. Bull.87, 245–251 (1980). Article Google Scholar