Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells (original) (raw)
References
Cho, S.W., Lee, J., Carroll, D., Kim, J.S. & Lee, J. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics195, 1177–1180 (2013). ArticleCAS Google Scholar
Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol.31, 230–232 (2013). ArticleCAS Google Scholar
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science339, 823–826 (2013). ArticleCAS Google Scholar
Jinek, M. et al. RNA-programmed genome editing in human cells. eLife2, e00471 (2013). Article Google Scholar
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol.31, 233–239 (2013). ArticleCAS Google Scholar
Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol.31, 227–229 (2013). ArticleCAS Google Scholar
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013). ArticleCAS Google Scholar
Kim, H. & Kim, J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet.15, 321–334 (2014). ArticleCAS Google Scholar
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012). ArticleCAS Google Scholar
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell163, 759–771 (2015). ArticleCAS Google Scholar
Kim, D., Kim, S., Kim, S., Park, J. & Kim, J.S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res.26, 406–415 (2016). ArticleCAS Google Scholar
Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature520, 186–191 (2015). ArticleCAS Google Scholar
Bae, S., Park, J. & Kim, J.S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics30, 1473–1475 (2014). ArticleCAS Google Scholar
Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods12, 237–243 (2015). ArticleCAS Google Scholar
Slaymaker, I.M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science351, 84–88 (2016). ArticleCAS Google Scholar
Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature529, 490–495 (2016). ArticleCAS Google Scholar
Horlbeck, M.A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife5, e12677 (2016). Article Google Scholar
Isaac, R.S. et al. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife5, e13450 (2016). Article Google Scholar
Kim, S., Kim, D., Cho, S.W., Kim, J. & Kim, J.S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res.24, 1012–1019 (2014). ArticleCAS Google Scholar
Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M. & Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol.32, 279–284 (2014). ArticleCAS Google Scholar
Wang, X. et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol.33, 175–178 (2015). ArticleCAS Google Scholar
Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol.33, 187–197 (2015). ArticleCAS Google Scholar
Frock, R.L. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol.33, 179–186 (2015). ArticleCAS Google Scholar
Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol.29, 24–26 (2011). ArticleCAS Google Scholar
Kim, Y., Kweon, J. & Kim, J.S. TALENs and ZFNs are associated with different mutation signatures. Nat. Methods10, 185 (2013). Article Google Scholar
Bae, S., Kweon, J., Kim, H.S. & Kim, J.S. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods11, 705–706 (2014). ArticleCAS Google Scholar
Nallamsetty, S., Austin, B.P., Penrose, K.J. & Waugh, D.S. Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci.14, 2964–2971 (2005). ArticleCAS Google Scholar
Cho, S.W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res.24, 132–141 (2014). ArticleCAS Google Scholar