Looking and listening to light: the evolution of whole-body photonic imaging (original) (raw)
References
Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev.17, 545–580 (2003). ArticleCASPubMed Google Scholar
Blasberg, R.G. In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations. Nucl. Med. Biol.30, 879–888 (2003). ArticleCASPubMed Google Scholar
Contag, C.H. & Bachmann, M.H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng.4, 235–260 (2002). ArticleCASPubMed Google Scholar
Piwnica-Worms, D., Schuster, D.P. & Garbow, J.R. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol.6, 319–331 (2004). ArticleCASPubMed Google Scholar
Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer2, 11–18 (2002). ArticleCASPubMed Google Scholar
Hoffman, R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol.3, 546–556 (2002). ArticleCASPubMed Google Scholar
Bornhop, D.J., Contag, C.H., Licha, K. & Murphy, C.J. Advance in contrast agents, reporters, and detection. J. Biomed. Opt.6, 106–110 (2001). ArticleCASPubMed Google Scholar
Tung, C., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res.60, 4953–4958 (2000). CASPubMed Google Scholar
Herschman, H.R. Molecular imaging: looking at problems, seeing solutions. Science302, 605–608 (2003). ArticleCASPubMed Google Scholar
Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med.9, 123–128 (2003). ArticleCASPubMed Google Scholar
Reynolds, J.S. et al. Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol.70, 87–94 (1999). ArticleCASPubMed Google Scholar
Mahmood, U., Tung, C., Bogdanov, A. & Weissleder, R. Near infrared optical imaging system to detect tumor protease activity. Radiology213, 866–870 (1999). ArticleCASPubMed Google Scholar
Yang, M. et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA97, 1206–1211 (2000). ArticleCAS Google Scholar
Contag, C.H. & Ross, B.D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging16, 378–387 (2002). ArticlePubMed Google Scholar
Farkas, D.L. et al. Non-invasive image acquisition and advanced processing in optical bioimaging. Comput. Med. Imaging Graph.22, 89–102 (1998). ArticleCASPubMed Google Scholar
Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22, 969–976 (2004). ArticleCASPubMed Google Scholar
Arridge, S.R., Schweiger, M., Hiraoka, M. & Delpy, D.T.A. Finite-Element Approach For Modeling Photon Transport In Tissue. Med. Phys.20, 299–309 (1993). Google Scholar
Graber, H.L. & Barbour, R.L. High-resolution near-infrared (nir) imaging of dense scattering media by diffusion tomography. FASEB J.7, A720–A720 (1993). Google Scholar
Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science198, 1264–1267 (1977). ArticleCASPubMed Google Scholar
Patterson, M.S., Chance, B. & Wilson, B.C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties. Appl. Opt.28, 2331–2336 (1989). ArticleCASPubMed Google Scholar
Graves, E., Ripoll, J., Weissleder, R. & Ntziachristos, V.A. Sub-millimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys.30, 901–911 (2003). ArticleCASPubMed Google Scholar
Alfano, R.R. et al. Time-resolved and nonlinear optical imaging for medical applications. Ann. NY Acad. Sci.838, 14–28 (1998). ArticleCASPubMed Google Scholar
Sevick, E.M., Chance, B., Leigh, J., Nioka, S. & Maris, M. Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation. Anal. Biochem.195, 330–351 (1991). ArticleCASPubMed Google Scholar
Cai, W. et al. Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements. Appl. Opt.38, 4237–4246 (1999). ArticleCASPubMed Google Scholar
Chen, K., Perelman, L.T., Zhang, Q.G., Dasari, R.R. & Feld, M.S. Optical computed tomography in a turbid medium using early arriving photons. J. Biomed. Opt.5, 144–154 (2000). ArticleCASPubMed Google Scholar
Turner, G., Zacharakis, I., Soubret, A. & Ntziachristos, V. Complete angle projection diffuse optical tomography using early photons. Optics Letters30, 409–411 (2005). ArticlePubMed Google Scholar
Boas, D.A., Oleary, M.A., Chance, B. & Yodh, A.G. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media - analytic solution and applications. Proc. Natl. Acad. Sci. USA91, 4887–4891 (1994). ArticleCASPubMedPubMed Central Google Scholar
Godavarty, A. et al. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Phys. Med. Biol.48, 1701–1720 (2003). ArticlePubMed Google Scholar
Boas, D.A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag.18, 57–75 (2001). Article Google Scholar
Ripoll, J., Schultz, R. & Ntziachristos, V. Free-space propagation of diffuse light: Theory and Experiments. Phys. Rev. Lett.91, 103901–103904 (2003). ArticlePubMed Google Scholar
Schultz, R., Ripoll, J. & Ntziachristos, V. Experimental fluorescence tomography of arbitrarily shaped diffuse objects using non-contact measurements. Opt. Lett.28, 1701–1703 (2003). Article Google Scholar
Schultz, R., Ripoll, J. & Ntziachristos, V. Fluorescence tomography of tissues with non-contact measurements. IEEE Med. Imag.23, 492–500 (2004). Article Google Scholar
Chang, J., Graber, H.L. & Barbour, R.L. Imaging of fluorescence in highly scattering media. IEEE Trans. Biomed. Eng.44, 810–822 (1997). ArticleCASPubMed Google Scholar
Eppstein, M.J., Hawrysz, D.J., Godavarty, A. & Sevick-Muraca, E.M. Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography. Proc. Natl. Acad. Sci. USA99, 9619–9624 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jiang, H.B. Frequency-domain fluorescent diffusion tomography: a finite- element-based algorithm and simulations. Appl. Opt.37, 5337–5343 (1998). ArticleCASPubMed Google Scholar
Milstein, A.B. et al. Fluorescence optical diffusion tomography. Appl. Opt.42, 3081–3094 (2003). ArticlePubMed Google Scholar
Ntziachristos, V. & Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Opt. Lett.26, 893–895 (2001). ArticleCASPubMed Google Scholar
Klose, A.D. & Hielscher, A.H. Fluorescence tomography with simulated data based on the equation of radiative transfer. Opt. Lett.28, 1019–1021 (2003). ArticlePubMed Google Scholar
Dehghani, H., Arridge, S.R., Schweiger, M. & Delpy, D.T. Optical tomography in the presence of void regions. J. Opt. Soc. Am. A Opt. Image Sci. Vis.17, 1659–1670 (2000). ArticleCASPubMed Google Scholar
Ntziachristos, V., Tung, C., Bremer, C. & Weissleder, R. Fluorescence-mediated tomography resolves protease activity in vivo. Nat. Med.8, 757–760 (2002). ArticleCASPubMed Google Scholar
Ripoll, J., Nieto-Vesperinas, M., Weissleder, R. & Ntziachristos, V. Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt. Lett.27, 527–529 (2002). ArticlePubMed Google Scholar
Gu, X., Xu, Y. & Jiang, H. Mesh-based enhancement schemes in diffuse optical tomography. Med. Phys.30, 861–869 (2003). ArticlePubMed Google Scholar
Ye, J.C., Bouman, C.A., Webb, K.J. & Millane, R.P. Nonlinear multigrid algorithms for Bayesian optical diffusion tomography. IEEE Trans. Image Process.10, 909–922 (2001). Article Google Scholar
Vernooy, J., Dentener, M., van Suylen, R., Buurman, W. & Wouters, E. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am. J. Respir. Cell Mol. Biol.26, 152–159 (2002). ArticleCASPubMed Google Scholar
Lautwein, A. et al. Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur. J. Immunol.32, 3348–3357 (2002). ArticleCASPubMed Google Scholar
Prin-Mathieu, C. et al. Enzymatic activities of bovine peripheral blood leukocytes and milk polymorphonuclear neutrophils during intramammary inflammation caused by lipopolysaccharide. Clin. Diagn. Lab. Immunol.9, 812–817 (2002). CASPubMedPubMed Central Google Scholar
Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol.17, 375–378 (1999). ArticleCASPubMed Google Scholar
Ntziachristos, V. et al. Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V - Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA101, 12294–12299 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, G., Li, Y. & Jiang, M. Uniqueness theorems in bioluminescence tomography. Med. Phys.31, 2289–2299 (2004). ArticlePubMed Google Scholar
Gu, X., Zhang, Q., Larcom, L. & Jiang, H.B. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express12, 3996–4000 (2004). ArticlePubMed Google Scholar
Hoelen, C.G.A. & de Mul, F.F.M. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt.39, 5872–5883 (2000). ArticleCASPubMed Google Scholar
Wang, X. et al. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett.29, 730–732 (2004). ArticlePubMed Google Scholar
Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol.21, 803–806 (2003). ArticleCASPubMed Google Scholar
Karabutov, A.A., Savateeva, E.V. & Oraevsky, A.A. Optoacoustic tomography: new modality of laser diagnostic systems. Laser Phys.13, 711–723 (2003). Google Scholar