Looking and listening to light: the evolution of whole-body photonic imaging (original) (raw)

References

  1. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).
    Article CAS PubMed Google Scholar
  2. Blasberg, R.G. In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations. Nucl. Med. Biol. 30, 879–888 (2003).
    Article CAS PubMed Google Scholar
  3. Budinger, T.F., Benaron, D.A. & Koretsky, A.P. Imaging transgenic animals. Annu. Rev. Biomed. Eng. 1, 611–648 (1999).
    Article CAS PubMed Google Scholar
  4. Contag, C.H. & Bachmann, M.H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).
    Article CAS PubMed Google Scholar
  5. Piwnica-Worms, D., Schuster, D.P. & Garbow, J.R. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol. 6, 319–331 (2004).
    Article CAS PubMed Google Scholar
  6. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2, 11–18 (2002).
    Article CAS PubMed Google Scholar
  7. Hoffman, R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 3, 546–556 (2002).
    Article CAS PubMed Google Scholar
  8. Bornhop, D.J., Contag, C.H., Licha, K. & Murphy, C.J. Advance in contrast agents, reporters, and detection. J. Biomed. Opt. 6, 106–110 (2001).
    Article CAS PubMed Google Scholar
  9. Tung, C., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).
    CAS PubMed Google Scholar
  10. Herschman, H.R. Molecular imaging: looking at problems, seeing solutions. Science 302, 605–608 (2003).
    Article CAS PubMed Google Scholar
  11. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).
    Article CAS PubMed Google Scholar
  12. Reynolds, J.S. et al. Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol. 70, 87–94 (1999).
    Article CAS PubMed Google Scholar
  13. Mahmood, U., Tung, C., Bogdanov, A. & Weissleder, R. Near infrared optical imaging system to detect tumor protease activity. Radiology 213, 866–870 (1999).
    Article CAS PubMed Google Scholar
  14. Yang, M. et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
    Article CAS Google Scholar
  15. Contag, C.H. & Ross, B.D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging 16, 378–387 (2002).
    Article PubMed Google Scholar
  16. Farkas, D.L. et al. Non-invasive image acquisition and advanced processing in optical bioimaging. Comput. Med. Imaging Graph. 22, 89–102 (1998).
    Article CAS PubMed Google Scholar
  17. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).
    Article CAS PubMed Google Scholar
  18. Arridge, S.R., Schweiger, M., Hiraoka, M. & Delpy, D.T.A. Finite-Element Approach For Modeling Photon Transport In Tissue. Med. Phys. 20, 299–309 (1993).
    Google Scholar
  19. Graber, H.L. & Barbour, R.L. High-resolution near-infrared (nir) imaging of dense scattering media by diffusion tomography. FASEB J. 7, A720–A720 (1993).
    Google Scholar
  20. Schotland, J.C. & Leigh, J.S. Photon diffusion imaging. FASEB J. 6, A446–A446 (1992).
    Google Scholar
  21. Yodh, A.G. & Chance, B. Spectroscopy and imaging with diffusing light. Phys. Today 48, 34–40 (1995).
    Article Google Scholar
  22. Chance, B. Optical Method. Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
    Article CAS PubMed Google Scholar
  23. Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).
    Article CAS PubMed Google Scholar
  24. Patterson, M.S., Chance, B. & Wilson, B.C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties. Appl. Opt. 28, 2331–2336 (1989).
    Article CAS PubMed Google Scholar
  25. Graves, E., Ripoll, J., Weissleder, R. & Ntziachristos, V.A. Sub-millimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. 30, 901–911 (2003).
    Article CAS PubMed Google Scholar
  26. Alfano, R.R. et al. Time-resolved and nonlinear optical imaging for medical applications. Ann. NY Acad. Sci. 838, 14–28 (1998).
    Article CAS PubMed Google Scholar
  27. Sevick, E.M., Chance, B., Leigh, J., Nioka, S. & Maris, M. Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation. Anal. Biochem. 195, 330–351 (1991).
    Article CAS PubMed Google Scholar
  28. Cai, W. et al. Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements. Appl. Opt. 38, 4237–4246 (1999).
    Article CAS PubMed Google Scholar
  29. Chen, K., Perelman, L.T., Zhang, Q.G., Dasari, R.R. & Feld, M.S. Optical computed tomography in a turbid medium using early arriving photons. J. Biomed. Opt. 5, 144–154 (2000).
    Article CAS PubMed Google Scholar
  30. Turner, G., Zacharakis, I., Soubret, A. & Ntziachristos, V. Complete angle projection diffuse optical tomography using early photons. Optics Letters 30, 409–411 (2005).
    Article PubMed Google Scholar
  31. Boas, D.A., Oleary, M.A., Chance, B. & Yodh, A.G. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media - analytic solution and applications. Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  32. Godavarty, A. et al. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Phys. Med. Biol. 48, 1701–1720 (2003).
    Article PubMed Google Scholar
  33. Boas, D.A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 18, 57–75 (2001).
    Article Google Scholar
  34. Ripoll, J., Schultz, R. & Ntziachristos, V. Free-space propagation of diffuse light: Theory and Experiments. Phys. Rev. Lett. 91, 103901–103904 (2003).
    Article PubMed Google Scholar
  35. Schultz, R., Ripoll, J. & Ntziachristos, V. Experimental fluorescence tomography of arbitrarily shaped diffuse objects using non-contact measurements. Opt. Lett. 28, 1701–1703 (2003).
    Article Google Scholar
  36. Schultz, R., Ripoll, J. & Ntziachristos, V. Fluorescence tomography of tissues with non-contact measurements. IEEE Med. Imag. 23, 492–500 (2004).
    Article Google Scholar
  37. Chang, J., Graber, H.L. & Barbour, R.L. Imaging of fluorescence in highly scattering media. IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
    Article CAS PubMed Google Scholar
  38. Eppstein, M.J., Hawrysz, D.J., Godavarty, A. & Sevick-Muraca, E.M. Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography. Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  39. Jiang, H.B. Frequency-domain fluorescent diffusion tomography: a finite- element-based algorithm and simulations. Appl. Opt. 37, 5337–5343 (1998).
    Article CAS PubMed Google Scholar
  40. Milstein, A.B. et al. Fluorescence optical diffusion tomography. Appl. Opt. 42, 3081–3094 (2003).
    Article PubMed Google Scholar
  41. Ntziachristos, V. & Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Opt. Lett. 26, 893–895 (2001).
    Article CAS PubMed Google Scholar
  42. Klose, A.D. & Hielscher, A.H. Fluorescence tomography with simulated data based on the equation of radiative transfer. Opt. Lett. 28, 1019–1021 (2003).
    Article PubMed Google Scholar
  43. Dehghani, H., Arridge, S.R., Schweiger, M. & Delpy, D.T. Optical tomography in the presence of void regions. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 17, 1659–1670 (2000).
    Article CAS PubMed Google Scholar
  44. Ntziachristos, V., Tung, C., Bremer, C. & Weissleder, R. Fluorescence-mediated tomography resolves protease activity in vivo. Nat. Med. 8, 757–760 (2002).
    Article CAS PubMed Google Scholar
  45. Ripoll, J., Nieto-Vesperinas, M., Weissleder, R. & Ntziachristos, V. Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt. Lett. 27, 527–529 (2002).
    Article PubMed Google Scholar
  46. Gu, X., Xu, Y. & Jiang, H. Mesh-based enhancement schemes in diffuse optical tomography. Med. Phys. 30, 861–869 (2003).
    Article PubMed Google Scholar
  47. Ye, J.C., Bouman, C.A., Webb, K.J. & Millane, R.P. Nonlinear multigrid algorithms for Bayesian optical diffusion tomography. IEEE Trans. Image Process. 10, 909–922 (2001).
    Article Google Scholar
  48. Vernooy, J., Dentener, M., van Suylen, R., Buurman, W. & Wouters, E. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am. J. Respir. Cell Mol. Biol. 26, 152–159 (2002).
    Article CAS PubMed Google Scholar
  49. Lautwein, A. et al. Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur. J. Immunol. 32, 3348–3357 (2002).
    Article CAS PubMed Google Scholar
  50. Prin-Mathieu, C. et al. Enzymatic activities of bovine peripheral blood leukocytes and milk polymorphonuclear neutrophils during intramammary inflammation caused by lipopolysaccharide. Clin. Diagn. Lab. Immunol. 9, 812–817 (2002).
    CAS PubMed PubMed Central Google Scholar
  51. Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).
    Article CAS PubMed Google Scholar
  52. Ntziachristos, V. et al. Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V - Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA 101, 12294–12299 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  53. Wang, G., Li, Y. & Jiang, M. Uniqueness theorems in bioluminescence tomography. Med. Phys. 31, 2289–2299 (2004).
    Article PubMed Google Scholar
  54. Gu, X., Zhang, Q., Larcom, L. & Jiang, H.B. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express 12, 3996–4000 (2004).
    Article PubMed Google Scholar
  55. Hoelen, C.G.A. & de Mul, F.F.M. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt. 39, 5872–5883 (2000).
    Article CAS PubMed Google Scholar
  56. Wang, X. et al. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett. 29, 730–732 (2004).
    Article PubMed Google Scholar
  57. Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003).
    Article CAS PubMed Google Scholar
  58. Karabutov, A.A., Savateeva, E.V. & Oraevsky, A.A. Optoacoustic tomography: new modality of laser diagnostic systems. Laser Phys. 13, 711–723 (2003).
    Google Scholar

Download references