Fluorescence molecular tomography resolves protease activity in vivo (original) (raw)

References

  1. Wouters, F.S., Verveer, P.J. & Bastiaens, P.I. Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211 (2001).
    Article CAS PubMed Google Scholar
  2. Han, M., Gao, X., Su, J.Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotech. 9, 631–635 (2001).
    Article Google Scholar
  3. Pollok, B.A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).
    Article CAS PubMed Google Scholar
  4. Pepperkok, R., Squire, A., Geley, S. & Bastiaens, P.I.H. Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Current Biol. 9, 269–272 (1999).
    Article CAS Google Scholar
  5. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002).
    Article CAS Google Scholar
  6. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  7. Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001).
    Article CAS PubMed Google Scholar
  8. Arridge, S. Optical tomography in medical imaging. Inverse Problems 15, R41–R93 (1999).
    Article Google Scholar
  9. Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  10. Paithankar D.Y., Chen A.U., Pogue B.W., Patterson M.S. & Sevick-Muraca E.M. Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media. Appl. Opt. 36, 2260-2272 (1997).
    Article CAS PubMed Google Scholar
  11. Ntziachristos, V. & Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Optics Lett. 26, 893–895 (2001).
    Article CAS Google Scholar
  12. Ntziachristos, V. & Weissleder, R. CCD-based scanner for three-dimensional fluorescence-mediated diffuse optical tomography of small animals. Medical Phys. 29, 803–809 (2002).
    Article Google Scholar
  13. Ntziachristos, V., Ripoll J. & Weissleder, R. Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Optics Lett. 27, 333–335 (2002).
    Article Google Scholar
  14. Demchik, L.L., Sameni, M., Nelson, K., Mikkelsen, T. & Sloane, B.F. Cathepsin B and glioma invasion. Int. J. Dev. Neurosci. 17, 483–494 (1999).
    Article CAS PubMed Google Scholar
  15. Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A., Jr . In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotech. 17, 375–378 (1999).
    Article CAS Google Scholar
  16. Tung, C., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).
    CAS PubMed Google Scholar
  17. Bremer, C., Tung, C. & Weissleder, R. Imaging of metalloproteinase2 inhibition in vivo. Nature Med. 7, 743–748 (2001).
    Article CAS PubMed Google Scholar
  18. Turk, B.E., Huang, L.L., Piro, E.T. & Cantley, L.C. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotech. 19, 661–667 (2001).
    Article CAS Google Scholar
  19. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).
    CAS PubMed Google Scholar

Download references