Shedding light onto live molecular targets (original) (raw)
Pham, T.H. et al. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Appl. Opt.39, 6487–6497 (2000). ArticleCASPubMed Google Scholar
Farkas, D.L. & Becker, D. Applications of spectral imaging: detection and analysis of human melanoma and its precursors. Pigment Cell Res.14, 2–8 (2001). ArticleCASPubMed Google Scholar
Zonios, G., Bykowski, J. & Kollias, N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol.117, 1452–1457 (2001). ArticleCASPubMed Google Scholar
Gratton, G. & Fabiani, M. Shedding light on brain function: the event-related optical signal. Trends Cogn. Sci.5, 357–363 (2001). ArticleCASPubMed Google Scholar
Vanzetta, I. & Grinvald, A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science286, 1555–1558 (1999). ArticleCASPubMed Google Scholar
Piston, D.W., Masters, B.R. & Webb, W.W. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J. Microsc.178, 20–27 (1995). ArticleCASPubMed Google Scholar
Franceschini, M.A. et al. Frequency-domain techniques enhance optical mammography: initial clinical results. Proc. Natl. Acad. Sci. USA94, 6468–6473 (1997). ArticleCASPubMedPubMed Central Google Scholar
Villringer, A. & Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci.20, 435–442 (1997). ArticleCASPubMed Google Scholar
Benaron, D.A. et al. Noninvasive functional imaging of human brain using light. J. Cerebral Blood Flow Metab.20, 469–477 (2000). ArticleCAS Google Scholar
Boas, D.A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Processing Mag.18, 57–75 (2001). Article Google Scholar
Pogue, B.W. et al. Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast. Radiology218, 261–266 (2001). ArticleCASPubMed Google Scholar
Ntziachristos, V. & Chance, B. Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res.3, 41–46 (2001). ArticleCASPubMed Google Scholar
Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia4, 347–354 (2002). ArticlePubMedPubMed Central Google Scholar
Alfano, R.R. et al. Time-resolved and nonlinear optical imaging for medical applications. Ann. NY Acad. Sci.838, 14–28 (1998). ArticleCASPubMed Google Scholar
Demos, S.G., Radousky, H.B. & Alfano, R.R. Deep subsurface imaging in tissues using spectral and polarization filtering. Optics Express7, 23–28 (2000). ArticleCASPubMed Google Scholar
Dunn, A.K., Bolay, T., Moskowitz, M.A. & Boas, D.A. Dynamic imaging of cerebral blood flow using laser speckle. J. Cerebral Blood Flow Metabol.21, 195–201 (2001). ArticleCAS Google Scholar
Tearney, G. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science276, 2037–2039 (1997). ArticleCASPubMed Google Scholar
Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med.7, 864–868 (2001). ArticleCASPubMed Google Scholar
Muller, M.G., Georgakoudi, I., Zhang, Q., Wu, J. & Feld, M.S. Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption. Appl. Opt.40, 4633–4646 (2001). ArticleCASPubMed Google Scholar
Gonzalez, S., Rajadhyaksha, M., Gonzalez-Serva, A., White, W.M. & Anderson, R.R. Confocal reflectance imaging of folliculitis in vivo: correlation with routine histology. J. Cutan. Pathol.26, 201–205 (1999). ArticleCASPubMed Google Scholar
Ito, S. et al. Detection of human gastric cancer in resected specimens using a novel infrared fluorescent anti-human carcinoembryonic antigen antibody with an infrared fluorescence endoscope in vitro. Endoscopy33, 849–853 (2001). ArticleCASPubMed Google Scholar
Marten, K. et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology122, 406–414 (2002). ArticlePubMed Google Scholar
Kuroiwa, T., Kajimoto, Y. & Ohta, T. Development and clinical application of near-infrared surgical microscope: preliminary report. Minim. Invasive Neurosurg.44, 240–242 (2001). ArticleCASPubMed Google Scholar
Richards-Kortum, R. & Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Physical Chem.47, 555–606 (1996). ArticleCAS Google Scholar
Wang, T.D. et al. In vivo identification of colonic dysplasia using fluorescence endoscopic imaging. Gastrointest. Endosc.49, 447–455 (1999). ArticleCASPubMed Google Scholar
Mahmood, U., Tung, C.H., Bogdanov, A., Jr. & Weissleder, R. Near-infrared optical imaging of protease activity for tumor detection. Radiology213, 866–870 (1999). ArticleCASPubMed Google Scholar
Ntziachristos, V., Tung, C., Bremer, C. & Weissleder, R. Fluorescence-mediated tomography resolves protease activity in vivo. Nat. Med.8, 575–560 (2002). ArticleCAS Google Scholar
Ntziachristos, V. & Weissleder, R. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. Med. Phys.29, 803–809 (2002). ArticlePubMed Google Scholar
Hawrysz, D.J. & Sevick-Muraca, E.M. Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia2, 388–417 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA97, 2767–2772 (2000). ArticleCASPubMedPubMed Central Google Scholar
Achilefu, S., Dorshow, R.B., Bugaj, J.E. & Rajagopalan, R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest. Radiol.35, 479–485 (2000). ArticleCASPubMed Google Scholar
Licha, K. et al. Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug. Chem.12, 44–50 (2001). ArticleCASPubMed Google Scholar
Becker, A. et al. Receptor-targeted optical imaging of tumors with near-infrared flurorescent ligands. Nat. Biotechnol.19, 327–331 (2001). ArticleCASPubMed Google Scholar
Tung, C.H., Lin, Y., Moon, W. & Weissleder, R. Receptor-targeted near-infrared fluorescence probe for in vivo tumor detection. ChemBioChem3, 784–786 (2002). ArticleCASPubMed Google Scholar
Ballou, B. et al. Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol. Immunother.41, 257–263 (1995). ArticleCASPubMed Google Scholar
Neri, D. et al. Targeting by affinity-matured recombinant antibody fragments on an angiogenesis-associated fibronectin isoform. Nat. Biotechnol.15, 1271–1275 (1997). ArticleCASPubMed Google Scholar
Muguruma, N. et al. Antibodies labeled with fluorescence-agent excitable by infrared rays. J. Gastroenterol.33, 467–471 (1998). ArticleCASPubMed Google Scholar
Folli, S. et al. Antibody–indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res.54, 2643–2649 (1994). CASPubMed Google Scholar
Zaheer, A. et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol.19, 1148–1154 (2001). ArticleCASPubMed Google Scholar
Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A., Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol.17, 375–378 (1999). ArticleCASPubMed Google Scholar
Tung, C.H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res.60, 4953–4958 (2000). CASPubMed Google Scholar
Bogdanov, A.A., Jr., Lin, C.P., Simonova, M., Matuszewski, L. & Weissleder, R. Cellular activation of the self-quenched fluorescent reporter probe in tumor microenvironment. Neoplasia4, 228–236 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bremer, C., Tung, C.H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med.7, 743–748 (2001). ArticleCASPubMed Google Scholar
Hope-Ross, M. et al. Adverse reactions due to indocyanine green. Ophthalmology101, 529–533 (1994). ArticleCASPubMed Google Scholar
Riefke, B., Licha, K., Semmler, W., Nolte, D. & Rinneberg, H. In vivo characterization of cyanine dyes as contrast agents for near-infrared imaging. SPIE2927, 199–208 (1996). CAS Google Scholar
Licha, K. et al. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol.72, 392–398 (2000). ArticleCASPubMed Google Scholar
Lin, Y., Weissleder, R. & Tung, C.H. Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug. Chem.13, 605–610 (2002). ArticlePubMedCAS Google Scholar
Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol.17, 969–973 (1999). ArticleCASPubMed Google Scholar
Gurskaya, N.G. et al. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett.507, 16–20 (2001). ArticleCASPubMed Google Scholar
Hoffman, R.M. Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques30, 1016–1022, 1024–1026 (2001). ArticleCASPubMed Google Scholar
Yang, M. et al. Whole-body optical imaging of green fluorescent protein–expressing tumors and metastases. Proc. Natl. Acad. Sci. USA97, 1206–1211 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moore, A., Sergeyev, N., Bredow, S. & Weissleder, R. A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis18, 192–197 (1998). ArticlePubMed Google Scholar
Wunderbaldinger, P., Josephson, L., Bremer, C., Moore, A. & Weissleder, R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn. Reson. Med.47, 292–297 (2002). ArticlePubMed Google Scholar
Yang, M., Baranov, E., Moossa, A.R., Penman, S. & Hoffman, R.M. Visualizing gene expression by whole-body fluorescence imaging. Proc. Natl. Acad. Sci. USA97, 12278–12282 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94, 715–725 (1998). ArticleCASPubMed Google Scholar
Moore, A., Marecos, E., Simonova, M., Weissleder, R. & Bogdanov, A., Jr. Novel gliosarcoma cell line expressing green fluorescent protein: a model for quantitative assessment of angiogenesis. Microvasc. Res.56, 145–153 (1998). ArticleCASPubMed Google Scholar
Hastings, J.W. Chemistries and colors of bioluminescent reactions: a review. Gene173, 5–11 (1996). ArticleCASPubMed Google Scholar
Contag, C.H., Jenkins, D., Contag, P.R. & Negrin, R.S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia2, 41–52 (2000). ArticleCASPubMedPubMed Central Google Scholar
Contag, C.H. et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol.66, 523–531 (1997). ArticleCASPubMed Google Scholar
Contag, C.H. & Stevenson, D.K. In vivo patterns of heme oxygenase-1 transcription. J. Perinatol.21 (Suppl. 1), S119–124; discussion S125–127 (2001). ArticlePubMed Google Scholar
Contag, P., Olomu, I., Stevenson, D. & Contag, C. Bioluminescent indicators in living mammals. Nat. Med.4, 245–247 (1998). ArticleCASPubMed Google Scholar
Bhaumik, S. & Gambhir, S.S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA99, 377–382 (2002). ArticleCASPubMed Google Scholar
Wetterwald, A. et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am. J. Pathol.160, 1143–1153 (2002). ArticlePubMedPubMed Central Google Scholar
Costa, G.L. et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T-cell delivery of the IL-12 p40 subunit. J. Immunol.167, 2379–2387 (2001). ArticleCASPubMed Google Scholar
Burns, S.M. et al. Revealing the spatiotemporal patterns of bacterial infectious diseases using bioluminescent pathogens and whole body imaging. Contrib. Microbiol.9, 71–88 (2001). ArticleCASPubMed Google Scholar
Weng, Y.H., Tatarov, A., Bartos, B.P., Contag, C.H. & Dennery, P.A. HO-1 expression in type II pneumocytes after transpulmonary gene delivery. Am. J. Physiol. Lung Cell Mol. Physiol.278, L1273–1279 (2000). ArticleCASPubMed Google Scholar
Wu, J.C., Sundaresan, G., Iyer, M. & Gambhir, S.S. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol. Ther.4, 297–306 (2001). ArticleCASPubMed Google Scholar
Honigman, A. et al. Imaging transgene expression in live animals. Mol. Ther.4, 239–249 (2001). ArticleCASPubMed Google Scholar
Zhang, W. et al. Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res.10, 423–434 (2001). ArticleCASPubMed Google Scholar
Vooijs, M., Jonkers, J., Lyons, S. & Berns, A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res.62, 1862–1867 (2002). CASPubMed Google Scholar
Ray, P. et al. Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc. Natl. Acad. Sci. USA99, 3105–3110 (2002). ArticleCASPubMedPubMed Central Google Scholar
Carlsen, H., Moskaug, J.O., Fromm, S.H. & Blomhoff, R. In vivo imaging of NF-κB activity. J. Immunol.168, 1441–1446 (2002). ArticleCASPubMed Google Scholar
Louie, A.Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol.18, 321–325 (2000). ArticleCASPubMed Google Scholar
Moats, R.A., Fraser, S.E. & Meade, T.J. A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew. Chem. Int. Edn. Engl.36, 726–731 (1997). ArticleCAS Google Scholar
Bogdanov, A., Matuszewski, L., Bremer, C., Petrovsky, A. & Weissleder, R. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Molec. Imag.1, 1–9 (2002). Article Google Scholar
Josephson, L., Perez, J. & Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Edn. Engl.40, 3204–3206 (2001). ArticleCAS Google Scholar
Perez, J.M., O'Loughin, T., Simeone, F.J., Weissleder, R. & Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc.124, 2856–2857 (2002). ArticleCASPubMed Google Scholar
Perez, J.M., Josephson, L., O'Loughin, T., Hogeman, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol.20, 816–820 (2002). ArticleCASPubMed Google Scholar
Josephson, L., Kircher, M.F., Mahmood, U., Tang, Y. & Weissleder, R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem.13, 554–560 (2002). ArticleCASPubMed Google Scholar
Huber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem.9, 242–249 (1998). ArticleCASPubMed Google Scholar
Georgakoudi, I., Mueller, M.G. & Feld, M.S. Intrinsic fluorescence spectroscopy of biological tissue in Fluorescence in Biomedicine (Marcel Dekker, New York, 2002). Google Scholar
Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity16, 157–168 (2002). ArticleCASPubMed Google Scholar