BMP-4 is required for hepatic specification of mouse embryonic stem cell–derived definitive endoderm (original) (raw)

References

  1. Kawashita, Y. et al. Liver repopulation: a new concept of hepatocyte transplantation. Surg. Today 35, 705–710 (2005).
    Article Google Scholar
  2. Lavon, N. & Benvenisty, N. Study of hepatocyte differentiation using embryonic stem cells. J. Cell. Biochem. 96, 1193–1202 (2005).
    Article CAS Google Scholar
  3. Zaret, K.S. Liver specification and early morphogenesis. Mech. Dev. 92, 83–88 (2000).
    Article CAS Google Scholar
  4. Conlon, F.L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928 (1994).
    CAS Google Scholar
  5. Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001).
    Article CAS Google Scholar
  6. Lowe, L.A., Yamada, S. & Kuehn, M.R. Genetic dissection of nodal function in patterning the mouse embryo. Development 128, 1831–1843 (2001).
    CAS Google Scholar
  7. Vincent, S.D., Dunn, N.R., Hayashi, S., Norris, D.P. & Robertson, E.J. Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev. 17, 1646–1662 (2003).
    Article CAS Google Scholar
  8. Zaret, K.S. Hepatocyte differentiation: from the endoderm and beyond. Curr. Opin. Genet. Dev. 11, 568–574 (2001).
    Article CAS Google Scholar
  9. Cascio, S. & Zaret, K.S. Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver formation. Development 113, 217–225 (1991).
    CAS Google Scholar
  10. Jung, J., Zheng, M., Goldfarb, M. & Zaret, K.S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998–2003 (1999).
    Article CAS Google Scholar
  11. Rossi, J.M., Dunn, N.R., Hogan, B.L. & Zaret, K.S. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 15, 1998–2009 (2001).
    Article CAS Google Scholar
  12. Gualdi, R. et al. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 10, 1670–1682 (1996).
    Article CAS Google Scholar
  13. Shiojiri, N., Lemire, J.M. & Fausto, N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 51, 2611–2620 (1991).
    CAS Google Scholar
  14. Zaret, K.S. Molecular genetics of early liver development. Annu. Rev. Physiol. 58, 231–251 (1996).
    Article CAS Google Scholar
  15. Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004).
    Article CAS Google Scholar
  16. Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23, 1542–1550 (2005).
    Article CAS Google Scholar
  17. D'Amour, K.A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).
    Article CAS Google Scholar
  18. Tada, S. et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363–4374 (2005).
    Article CAS Google Scholar
  19. Kaestner, K.H., Hiemisch, H., Luckow, B. & Schutz, G. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20, 377–385 (1994).
    Article CAS Google Scholar
  20. Weinstein, D.C. et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994).
    Article CAS Google Scholar
  21. Monaghan, A.P., Kaestner, K.H., Grau, E. & Schutz, G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567–578 (1993).
    CAS Google Scholar
  22. Orr-Urtreger, A. et al. Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development 109, 911–923 (1990).
    CAS Google Scholar
  23. Reedy, M.V., Johnson, R.L. & Erickson, C.A. The expression patterns of c-kit and Sl in chicken embryos suggest unexpected roles for these genes in somite and limb development. Gene Expr. Patterns 3, 53–58 (2003).
    Article CAS Google Scholar
  24. Gadue, P., Huber, T.L., Paddison, P.J. & Keller, G.M. Wnt and TGFbeta Signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Assoc. Sci. USA in the press.
  25. Kanai-Azuma, M. et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129, 2367–2379 (2002).
    CAS Google Scholar
  26. Martinez Barbera, J.P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 (2000).
    CAS Google Scholar
  27. Wilkinson, D.G., Bhatt, S. & Herrmann, B.G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).
    Article CAS Google Scholar
  28. Dziadek, M.A. & Andrews, G.K. Tissue specificity of alpha-fetoprotein messenger RNA expression during mouse embryogenesis. EMBO J. 2, 549–554 (1983).
    Article CAS Google Scholar
  29. Minguet, S. et al. A population of c-Kit(low)(CD45/TER119)- hepatic cell progenitors of 11-day postcoitus mouse embryo liver reconstitutes cell-depleted liver organoids. J. Clin. Invest. 112, 1152–1163 (2003).
    Article CAS Google Scholar
  30. Suzuki, A. et al. Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology 32, 1230–1239 (2000).
    Article CAS Google Scholar
  31. Nitou, M., Sugiyama, Y., Ishikawa, K. & Shiojiri, N. Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-e-cadherin antibodies and their in vitro culture. Exp. Cell Res. 279, 330–343 (2002).
    Article CAS Google Scholar
  32. Nierhoff, D., Ogawa, A., Oertel, M., Chen, Y.Q. & Shafritz, D.A. Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. Hepatology 42, 130–139 (2005).
    Article Google Scholar
  33. Block, G.D. et al. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J. Cell Biol. 132, 1133–1149 (1996).
    Article CAS Google Scholar
  34. Huber, O., Bierkamp, C. & Kemler, R. Cadherins and catenins in development. Curr. Opin. Cell Biol. 8, 685–691 (1996).
    Article CAS Google Scholar
  35. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K.S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).
    Article CAS Google Scholar
  36. Asahina, K. et al. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 9, 1297–1308 (2004).
    Article CAS Google Scholar
  37. Germain, L., Blouin, M.J. & Marceau, N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 48, 4909–4918 (1988).
    CAS Google Scholar
  38. Martin, C.A., Salomoni, P.D. & Badran, A.F. Cytokeratin immunoreactivity in mouse tissues: study of different antibodies with a new detection system. Appl. Immunohistochem. Mol. Morphol. 9, 70–73 (2001).
    CAS Google Scholar
  39. Guz, Y. et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121, 11–18 (1995).
    CAS Google Scholar
  40. Glasser, S.W., Korfhagen, T.R., Bruno, M.D., Dey, C. & Whitsett, J.A. Structure and expression of the pulmonary surfactant protein SP-C gene in the mouse. J. Biol. Chem. 265, 21986–21991 (1990).
    CAS Google Scholar
  41. Sweetser, D.A., Heuckeroth, R.O. & Gordon, J.I. The metabolic significance of mammalian fatty-acid-binding proteins: abundant proteins in search of a function. Annu. Rev. Nutr. 7, 337–359 (1987).
    Article CAS Google Scholar
  42. Lillie, R.D. & Fullmer, H.M. Histopathologic Technique and Practical Histochemistry (New York; 1976, edition 4, McGraw-Hill Inc.)
    Google Scholar
  43. McGrath, K.E. et al. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213, 442–456 (1999).
    Article CAS Google Scholar
  44. Willenbring, H. et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744–748 (2004).
    Article CAS Google Scholar
  45. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).
    Article CAS Google Scholar
  46. Lemaigre, F. & Zaret, K.S. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr. Opin. Genet. Dev. 14, 582–590 (2004).
    Article CAS Google Scholar
  47. Sigal, S.H. et al. Characterization and enrichment of fetal rat hepatoblasts by immunoadsorption (“panning”) and fluorescence-activated cell sorting. Hepatology 19, 999–1006 (1994).
    CAS Google Scholar
  48. Neufeld, D.S. Isolation of rat liver hepatocytes. Methods Mol. Biol. 75, 145–151 (1997).
    CAS Google Scholar
  49. Guo, D., Fu, T., Nelson, J.A., Superina, R.A. & Soriano, H.E. Liver repopulation after cell transplantation in mice treated with retrorsine and carbon tetrachloride. Transplantation 73, 1818–1824 (2002).
    Article CAS Google Scholar
  50. Laconi, E. et al. Long-term, near-total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. Am. J. Pathol. 153, 319–329 (1998).
    Article CAS Google Scholar
  51. Dabeva, M.D. et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am. J. Pathol. 156, 2017–2031 (2000).
    Article CAS Google Scholar

Download references