Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies (original) (raw)
Hancock, R.E.W. & Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol.16, 82–88 (1998). ArticleCAS Google Scholar
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature415, 389–395 (2002). ArticleCAS Google Scholar
Oppenheim, J.J. & Yang, D. Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol.17, 359–365 (2005). ArticleCAS Google Scholar
Bowdish, D.M.E., Davidson, D.J. & Hancock, R.E.W. A re-evaluation of the role of host defense peptides in mammalian immunity. Curr. Protein Pept. Sci.6, 35–51 (2005). ArticleCAS Google Scholar
Emes, R.D., Goodstadt, L., Winter, E.E. & Ponting, C.P. Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum. Mol. Genet.12, 701–709 (2003). ArticleCAS Google Scholar
Patil, A., Hughes, A.L. & Zhang, G. Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol. Genomics20, 1–11 (2004). ArticleCAS Google Scholar
Crovella, S. et al. Primate beta-defensins - structure, function and evolution. Curr. Protein Pept. Sci.6, 7–21 (2005). ArticleCAS Google Scholar
Peschel, A. & Sahl, H.G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol.4, 529–536 (2006). ArticleCAS Google Scholar
Yount, N.Y. & Yeaman M.R. Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochim. Biophys. Acta9, 1373–1386 (2006). Article Google Scholar
McAuliffe, O., Ross, R.P. & Hill, C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev.25, 285–308 (2001). ArticleCAS Google Scholar
Hsu, S.T. et al. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol.11, 963–967 (2004). ArticleCAS Google Scholar
Finking, R. & Marahiel, M.A. Biosynthesis of nonribosomal peptides. Annu. Rev. Microbiol.58, 453–488 (2004). ArticleCAS Google Scholar
Coulter, S.N. et al. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol.30, 393–404 (1998). ArticleCAS Google Scholar
Jenssen, H., Hamill, P. & Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev.19, 491–511 (2006). ArticleCAS Google Scholar
Yeaman, M.R. & Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev.55, 27–55 (2003). ArticleCAS Google Scholar
Sahl, H.G. et al. Mammalian defensins: structures and mechanism of antibiotic activity. J. Leukoc. Biol.77, 466–475 (2005). ArticleCAS Google Scholar
Brazas, M.D. & Hancock, R.E.W. Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov. Today10, 1245–1252 (2005). ArticleCAS Google Scholar
Perron, G.G., Zasloff, M. & Bell, G. Experimental evolution of resistance to an antimicrobial peptide. Proc. Biol. Sci.273, 251–256 (2006). ArticleCAS Google Scholar
Samuelsen, O. et al. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus. FEBS Lett.579, 3421–3426 (2005). ArticleCAS Google Scholar
Breukink, E. & de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov.5, 321–332 (2006). ArticleCAS Google Scholar
Zhang, L. & Falla, T.J. Antimicrobial peptides: therapeutic potential. Expert Opin. Pharmacother.7, 653–663 (2006). ArticleCAS Google Scholar
Lau, Y.E. et al. Interaction and cellular localization of the human host defense peptide, LL-37, with lung epithelial cells. Infect. Immun.73, 583–591 (2005). ArticleCAS Google Scholar
Sandgren, S. et al. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J. Biol. Chem.279, 17951–17956 (2004). ArticleCAS Google Scholar
McPhee, J.B., Scott, M.G. & Hancock, R.E.W. Design of host defence peptides for antimicrobial and immunity enhancing activities. Comb. Chem. High Throughput Screen.8, 257–272 (2005). ArticleCAS Google Scholar
Mygind, P.H. et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature437, 975–980 (2005). ArticleCAS Google Scholar
Cotter, P.D., Hill, C. & Ross, R.P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol.3, 777–788 (2005). ArticleCAS Google Scholar
Hilpert, K., Volkmer-Engert, R., Walter, T. & Hancock, R.E.W. High-throughput generation of small antibacterial peptides with improved activity. Nat. Biotechnol.23, 1008–1012 (2005). ArticleCAS Google Scholar
Freidinger, R.M. et al. Design and synthesis of novel bioactive peptides and peptidomimetics. J. Med. Chem.46, 5553–5566 (2003). ArticleCAS Google Scholar
Masip, I., Perez-Paya, E. & Messeguer, A. Peptoids as source of compounds eliciting antibacterial activity. Comb. Chem. High Throughput Screen.8, 235–239 (2005). ArticleCAS Google Scholar
Robinson, J.A. et al. Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I. Bioorg. Med. Chem.13, 2055–2064 (2005). ArticleCAS Google Scholar
Porter, E.A., Wang, X., Lee, H.S., Weisblum, B. & Gellman, S.H. Non-haemolytic beta-amino-acid oligomers. Nature404, 565 (2000). ArticleCAS Google Scholar
Marshall, N.J., Andruszkiewicz, R., Gupta, S., Milewski, S. & Payne, J.W. Structure-activity relationships for a series of peptidomimetic antimicrobial prodrugs containing glutamine analogues. J. Antimicrob. Chemother.51, 821–831 (2003). ArticleCAS Google Scholar
Xie, L. et al. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science303, 679–681 (2004). ArticleCAS Google Scholar
Rink, R., et al. Lantibiotic structures as guidelines for the design of peptides that can be modified by lantibiotic enzymes. Biochem.44, 8873–8882 (2005). ArticleCAS Google Scholar
Finlay, B.B. & Hancock, R.E.W. Can innate immunity be enhanced to treat infections? Nat. Rev. Microbiol.2, 497–504 (2004). ArticleCAS Google Scholar
O'Neill, L.A. How Toll-like receptors signal: what we know and what we don't know. Curr. Opin. Immunol.18, 3–9 (2006). ArticleCAS Google Scholar
Bowdish, D.M.E. et al. Impact of LL-37 on anti-infective immunity. J. Leukoc. Biol.77, 451–459 (2005). ArticleCAS Google Scholar
Zhang, L. et al. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother.49, 2921–2927 (2005). ArticleCAS Google Scholar