Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture (original) (raw)
References
Schnitzer, J.E. Update on the cellular and molecular basis of capillary permeability. Trends Cardiovasc. Med.3, 124–130 (1993). ArticleCASPubMed Google Scholar
Madri, J.A. & Williams, S.K. Capillary endothelial cell culture: Phenotype modulation by matrix components. J. Cell Biol.97, 153–165 (1983). ArticleCASPubMed Google Scholar
Goerdt, S. et al. Characterization and differential expression of an endothelial cell- specific surface antigen in continuous and sinusoidal endothelial, in skin vascular lesions and in vitro. Exp. Cell Biol.57, 185–192 (1989). CASPubMed Google Scholar
Gumkowski, F., Kaminska, G., Kaminski, M., Morrissey, L.W. & Auerbach, R. Heterogeneity of mouse vascular endothelium. Blood Vessels24, 11–23 (1987). CASPubMed Google Scholar
Aird, W.C. et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J. Cell Biol.138, 1117–1124 (1997). ArticleCASPubMedPubMed Central Google Scholar
Janzer, R.C. & Raff, M.C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature325, 253–257 (1987). ArticleCASPubMed Google Scholar
Stewart, P.A. & Wiley, M.J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol.84, 183–192 (1981). ArticleCASPubMed Google Scholar
Auerbach, R., Alby, L., Morrissey, L.W., Tu, M. & Joseph, J. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res.29, 401–411 (1985). ArticleCASPubMed Google Scholar
St. Croix, B. et al. Genes expressed in human tumor endothelium. Science289, 1197–1202 (2000). ArticleCASPubMed Google Scholar
Obermeyer, N., Janson, N., Bergmann, J., Buck, F. & Ito, W.D. Proteome analysis of migrating versus nonmigrating rat heart endothelial cells reveals distinct expression patterns. Endothelium10, 167–178 (2003). ArticleCASPubMed Google Scholar
Bruneel, A. et al. Proteomic study of human umbilical vein endothelial cells in culture. Proteomics3, 714–723 (2003). ArticleCASPubMed Google Scholar
Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature380, 364–366 (1996). ArticleCASPubMed Google Scholar
Rajotte, D. et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest.102, 430–437 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schnitzer, J.E., McIntosh, D.P., Dvorak, A.M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science269, 1435–1439 (1995). ArticleCASPubMed Google Scholar
Oh, P. & Schnitzer, J.E. Isolation and subfractionation of plasma membranes to purify caveolae seperately from glycosyl-phosphatidylinositol-anchored protein microdomain in Cell Biology: A Laboratory Handbook, vol. 2 (ed. Celis, J..) 34–45 (Academic Press, Orlando, 1998). Google Scholar
Rizzo, V., Morton, C., DePaola, N., Schnitzer, J.E. & Davies, P.F. Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am. J. Physiol. Heart Circ. Physiol.285, H1720–H1729 (2003). ArticleCASPubMed Google Scholar
Schnitzer, J.E., Liu, J. & Oh, P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem.270, 14399–14404 (1995). ArticleCASPubMed Google Scholar
Schnitzer, J.E. & Oh, P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol.270, H416–H422 (1996). CASPubMed Google Scholar
Schnitzer, J.E. & Oh, P. Antibodies to SPARC inhibit albumin binding to SPARC, gp60, and microvascular endothelium. Am. J. Physiol.263, H1872–H1879 (1992). CASPubMed Google Scholar
Wolters, D.A., Washburn, M.P. & Yates, J.R., III. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem.73, 5683–5690 (2001). ArticleCASPubMed Google Scholar
Jeffries, W.A. et al. Transferrin receptor on endothelium of brain capillaries. Nature312, 162–163 (1984). Article Google Scholar
Schnitzer, J.E. & Oh, P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem.269, 6072–6082 (1994). CASPubMed Google Scholar
Schnitzer, J.E. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol.262, H246–H254 (1992). CASPubMed Google Scholar
Christian, S. et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol.163, 871–878 (2003). ArticleCASPubMedPubMed Central Google Scholar
Negrutskii, B.S. & El'skaya, A.V. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog. Nucleic Acid Res. Mol. Biol.60, 47–78 (1998). ArticleCASPubMed Google Scholar
Honscha, W., Ottallah, M., Kistner, A., Platte, H. & Petzinger, E. A membrane-bound form of protein disulfide isomerase (PDI) and the hepatic uptake of organic anions. Biochim. Biophys. Acta1153, 175–183 (1993). ArticleCASPubMed Google Scholar
Hebert, C. et al. Cell surface colligin/Hsp47 associates with tetraspanin protein CD9 in epidermoid carcinoma cell lines. J. Cell. Biochem.73, 248–258 (1999). ArticleCASPubMed Google Scholar
Schnitzer, J. The endothelial cell surface and caveolae in health and disease. in Vascular Endothelium: Physiology, Pathology and Therapeutic Opportunities (eds. Born, G.V.R. & Schwartz, C.J.) 77–95 (1997). Google Scholar
Washburn, M.P., Wolters, D. & Yates, J.R. III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19, 242–247 (2001). ArticleCASPubMed Google Scholar
McIntosh, D.P., Tan, X.Y., Oh, P. & Schnitzer, J.E. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc. Natl. Acad. Sci. USA99, 1996–2001 (2002). ArticleCASPubMedPubMed Central Google Scholar
Carver, L.A. & Schnitzer, J.E. Caveolae: mining little caves for new cancer targets. Nat. Rev. Cancer3, 571–581 (2003). ArticleCASPubMed Google Scholar
Weinman, E.J., Steplock, D. & Shenolikar, S. Acute regulation of NHE3 by protein kinase A requires a multiprotein signal complex. Kidney Int.60, 450–454 (2001). ArticleCASPubMed Google Scholar
Abe, J., Suzuki, H., Notoya, M., Yamamoto, T. & Hirose, S. Ig-hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a new subfamily of GPCRs. J. Biol. Chem.274, 19957–19964 (1999). ArticleCASPubMed Google Scholar
van der Merwe, P.A. et al. The NH2-terminal domain of rat CD2 binds rat CD48 with a low affinity and binding does not require glycosylation of CD2. Eur. J. Immunol.23, 1373–1377 (1993). ArticleCASPubMed Google Scholar
Magee, J.C., Stone, A.E., Oldham, K.T. & Guice, K.S. Isolation, culture, and characterization of rat lung microvascular endothelial cells. Am. J. Physiol.267, L433–L441 (1994). CASPubMed Google Scholar
Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol.17, 676–682 (1999). ArticleCASPubMed Google Scholar
Eng, J. & McCormac, A. & Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom.5, 976–989 (1994). ArticleCASPubMed Google Scholar
Tabb, D.L., McDonald, W.H. & Yates, J.R. III. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res.1, 21–26 (2002). ArticleCASPubMedPubMed Central Google Scholar