Polycomb CBX7 has a unifying role in cellular lifespan (original) (raw)
Hayflick, L. The limited in vitro lifespan of human diploid cell strains. Exp. Cell Res.37, 614–621 (1965). ArticleCAS Google Scholar
Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol.11, S27–S31 (2001). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell100, 57–70 (2000). ArticleCAS Google Scholar
Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature396, 84–88 (1998). ArticleCAS Google Scholar
Jacobs, J.J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nature Genet.26, 291–299 (2000). ArticleCAS Google Scholar
Jacobs, J.J.L., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999). ArticleCAS Google Scholar
Hannon, G.J. et al. MaRX: an approach to genetics in mammalian cells. Science283, 1129–1130 (1999). ArticleCAS Google Scholar
Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev.13, 2207–2217 (1999). ArticleCAS Google Scholar
Kamijo, T.F. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91, 649–659 (1997). ArticleCAS Google Scholar
Paro, R. & Hogness, D.S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl Acad. Sci. USA88, 263–267 (1991). ArticleCAS Google Scholar
Min, J., Zhang, Y. & Xu, R.-M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev.17, 1823–1828 (2003). ArticleCAS Google Scholar
Jones, D.O., Cowell, I.G. & Singh, P.B. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays22, 124–137 (2000). ArticleCAS Google Scholar
Satijn, D.P. & Otte, A.P. Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim. Biophys. Acta1447, 1–16 (1999). ArticleCAS Google Scholar
Satijn, D.P. et al. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol.17, 4105–4113 (1997). ArticleCAS Google Scholar
Saurin, A.J. et al. The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol.142, 887–898 (1998). ArticleCAS Google Scholar
Jacobs, J.J. & van Lohuizen, M. Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim. Biophys. Acta1602, 151–161 (2002). CASPubMed Google Scholar
Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCAS Google Scholar
Quelle, D.E., Zindy, F., Ashmun, R.A. & Sherr, C.J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell83, 993–1000 (1995). ArticleCAS Google Scholar
Zhang, Y., Xiong, Y. & Yarbrough, W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell92, 725–734 (1998). ArticleCAS Google Scholar
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell85, 27–37 (1996). ArticleCAS Google Scholar
Sharpless, N.E. & DePinho, R.A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev.9, 22–30 (1999). ArticleCAS Google Scholar
Alkema, M.J., Jacobs, H., van Lohuizen, M. & Berns, A. Perturbation of B and T cell development and predisposition to lymphomagenesis in E-Bmi1 transgenic mice require the Bmi1 RING finger. Oncogene15, 899–910 (1997). ArticleCAS Google Scholar
Sewalt, R.G. et al. Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. Mol. Cell Biol.18, 3586–3595 (1998). ArticleCAS Google Scholar
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002). ArticleCAS Google Scholar
Gunster, M.J. et al. Differential expression of human Polycomb group proteins in various tissues and cell types. J. Cell Biochem.81, 129–143 (2001). Article Google Scholar
Itahana, K. et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell Biol.23, 389–401 (2003). ArticleCAS Google Scholar
Dimri, G.P. et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res.62, 4736–4745 (2002). CASPubMed Google Scholar
Satijn, D.P. et al. Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis. Mol. Cell Biol.17, 6076–6086 (1997). ArticleCAS Google Scholar
Carnero, A., Hudson, J.D., Hannon, G.J. & Beach, D.H. Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res.28, 2234–2241 (2000). ArticleCAS Google Scholar
Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCAS Google Scholar