A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis (original) (raw)

References

  1. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).
    Article CAS Google Scholar
  2. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).
    Article CAS Google Scholar
  3. Vitale, N. et al. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J. 20, 2424–2434 (2001).
    Article CAS Google Scholar
  4. Huang, P., Altshuller, Y. M., Chunqiu Hou, J., Pessin, J. E. & Frohman, M. A. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol. Biol. Cell 16, 2614–2623 (2005).
    Article CAS Google Scholar
  5. Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422 (2004).
    Article CAS Google Scholar
  6. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).
    Article CAS Google Scholar
  7. Malka, F. et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep. 6, 853–859 (2005).
    Article CAS Google Scholar
  8. Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752 (2004).
    Article CAS Google Scholar
  9. Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862 (2004).
    Article CAS Google Scholar
  10. Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535–6546 (2004).
    Article CAS Google Scholar
  11. Nakanishi, H. et al. Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J. Cell. Sci. 119, 1406–1415 (2006).
    Article CAS Google Scholar
  12. Hammond, S. M. et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640–29643 (1995).
    Article CAS Google Scholar
  13. Sung, T. C. et al. Mutagenesis of phospholipase D defines a superfamily including a trans- Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519–4530 (1997).
    Article CAS Google Scholar
  14. Stuckey, J. A. & Dixon, J. E. Crystal structure of a phospholipase D family member. Nature Struct. Biol. 6, 278–284 (1999).
    Article CAS Google Scholar
  15. Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M. & Mihara, K. Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J. Cell Biol. 151, 277–288 (2000).
    Article CAS Google Scholar
  16. Leiros, I., Secundo, F., Zambonelli, C., Servi, S. & Hough, E. The first crystal structure of a phospholipase D. Structure Fold Des. 8, 655–667 (2000).
    Article CAS Google Scholar
  17. Legros, F., Lombes, A., Frachon, P. & Rojo, M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354 (2002).
    Article CAS Google Scholar
  18. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).
    Article CAS Google Scholar
  19. Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005).
    Article CAS Google Scholar
  20. Cable, M. B., Jacobus, J. & Powell, G. L. Cardiolipin: a stereospecifically spin-labeled analogue and its specific enzymic hydrolysis. Proc. Natl Acad. Sci. USA 75, 1227–1231 (1978).
    Article CAS Google Scholar
  21. Liu, J. et al. Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol. Cancer Res. 1, 892–902 (2003).
    CAS PubMed Google Scholar
  22. Hovius, R., Thijssen, J., van der Linden, P., Nicolay, K. & de Kruijff, B. Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett. 330, 71–76 (1993).
    Article CAS Google Scholar
  23. Cao, J., Liu, Y., Lockwood, J., Burn, P. & Shi, Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J. Biol. Chem. 279, 31727–31734 (2004).
    Article CAS Google Scholar
  24. Karbowski, M. et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164, 493–499 (2004).
    Article CAS Google Scholar
  25. Esposti, M. D., Cristea, I. M., Gaskell, S. J., Nakao, Y. & Dive, C. Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death. Differ. 10, 1300–1309 (2003).
    Article CAS Google Scholar
  26. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chem. Biol. 1, 223–232 (2005).
    Article CAS Google Scholar
  27. Neutzner, A. & Youle, R. J. Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 280, 18598–18603 (2005).
    Article CAS Google Scholar
  28. Nakanishi, H., de los Santos, P. & Neiman, A. M. Positive and negative regulation of a SNARE protein by control of intracellular localization. Mol. Biol. Cell 15, 1802–1815 (2004).
    Article CAS Google Scholar
  29. Vicogne, J. et al. Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc. Natl Acad. Sci. USA doi: 10.1073/pnas0606881103 (2006).
  30. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004).
    Article Google Scholar
  31. Kuhlenbaumer, G., Young, P., Hunermund, G., Ringelfstein, B. & Stogbauer, F. Clinical features and molecular genetics of hereditary peripheral neuropathies. J. Neurol. 249, 1629–1650 (2002).
    Article CAS Google Scholar

Download references