A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis (original) (raw)
References
Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell116, 153–166 (2004). ArticleCAS Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 (1998). ArticleCAS Google Scholar
Vitale, N. et al. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J.20, 2424–2434 (2001). ArticleCAS Google Scholar
Huang, P., Altshuller, Y. M., Chunqiu Hou, J., Pessin, J. E. & Frohman, M. A. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol. Biol. Cell16, 2614–2623 (2005). ArticleCAS Google Scholar
Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature431, 415–422 (2004). ArticleCAS Google Scholar
Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell90, 121–129 (1997). ArticleCAS Google Scholar
Malka, F. et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep.6, 853–859 (2005). ArticleCAS Google Scholar
Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science305, 1747–1752 (2004). ArticleCAS Google Scholar
Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science305, 858–862 (2004). ArticleCAS Google Scholar
Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci.117, 6535–6546 (2004). ArticleCAS Google Scholar
Nakanishi, H. et al. Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J. Cell. Sci.119, 1406–1415 (2006). ArticleCAS Google Scholar
Hammond, S. M. et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem.270, 29640–29643 (1995). ArticleCAS Google Scholar
Sung, T. C. et al. Mutagenesis of phospholipase D defines a superfamily including a trans- Golgi viral protein required for poxvirus pathogenicity. EMBO J.16, 4519–4530 (1997). ArticleCAS Google Scholar
Stuckey, J. A. & Dixon, J. E. Crystal structure of a phospholipase D family member. Nature Struct. Biol.6, 278–284 (1999). ArticleCAS Google Scholar
Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M. & Mihara, K. Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J. Cell Biol.151, 277–288 (2000). ArticleCAS Google Scholar
Leiros, I., Secundo, F., Zambonelli, C., Servi, S. & Hough, E. The first crystal structure of a phospholipase D. Structure Fold Des.8, 655–667 (2000). ArticleCAS Google Scholar
Legros, F., Lombes, A., Frachon, P. & Rojo, M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell13, 4343–4354 (2002). ArticleCAS Google Scholar
Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol.160, 189–200 (2003). ArticleCAS Google Scholar
Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem.280, 26185–26192 (2005). ArticleCAS Google Scholar
Cable, M. B., Jacobus, J. & Powell, G. L. Cardiolipin: a stereospecifically spin-labeled analogue and its specific enzymic hydrolysis. Proc. Natl Acad. Sci. USA75, 1227–1231 (1978). ArticleCAS Google Scholar
Liu, J. et al. Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol. Cancer Res.1, 892–902 (2003). CASPubMed Google Scholar
Hovius, R., Thijssen, J., van der Linden, P., Nicolay, K. & de Kruijff, B. Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett.330, 71–76 (1993). ArticleCAS Google Scholar
Cao, J., Liu, Y., Lockwood, J., Burn, P. & Shi, Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J. Biol. Chem.279, 31727–31734 (2004). ArticleCAS Google Scholar
Karbowski, M. et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol.164, 493–499 (2004). ArticleCAS Google Scholar
Esposti, M. D., Cristea, I. M., Gaskell, S. J., Nakao, Y. & Dive, C. Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death. Differ.10, 1300–1309 (2003). ArticleCAS Google Scholar
Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chem. Biol.1, 223–232 (2005). ArticleCAS Google Scholar
Neutzner, A. & Youle, R. J. Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J. Biol. Chem.280, 18598–18603 (2005). ArticleCAS Google Scholar
Nakanishi, H., de los Santos, P. & Neiman, A. M. Positive and negative regulation of a SNARE protein by control of intracellular localization. Mol. Biol. Cell15, 1802–1815 (2004). ArticleCAS Google Scholar
Vicogne, J. et al. Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc. Natl Acad. Sci. USA doi: 10.1073/pnas0606881103 (2006).
Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet.36, 449–451 (2004). Article Google Scholar
Kuhlenbaumer, G., Young, P., Hunermund, G., Ringelfstein, B. & Stogbauer, F. Clinical features and molecular genetics of hereditary peripheral neuropathies. J. Neurol.249, 1629–1650 (2002). ArticleCAS Google Scholar