Bantel, H., Schmitz, M.L., Raible, A., Gregor, M. & Schulze-Osthoff, K. Critical role of NF-κB and stress-activated protein kinases in steroid unresponsiveness. FASEB. J.16, 1832–1834 (2002). ArticleCAS Google Scholar
Rachmilewitz, D. et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology126, 520–528 (2004). ArticleCAS Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). ArticleCAS Google Scholar
Rachmilewitz, D. et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology122, 1428–1441 (2002). ArticleCAS Google Scholar
Fukata, M. et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am. J. Physiol. Gastrointest. Liver Physiol.288, G1055–G1065 (2005). ArticleCAS Google Scholar
Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest.115, 695–702 (2005). ArticleCAS Google Scholar
Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett.85, 85–95 (2003). ArticleCAS Google Scholar
Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol.4, 499–511 (2004). ArticleCAS Google Scholar
Cario, E. et al. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol.160, 165–173 (2002). ArticleCAS Google Scholar
Ortega-Cava, C.F. et al. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J. Immunol.170, 3977–3985 (2003). ArticleCAS Google Scholar
Gewirtz, A.T. Navas,T.A., Lyons, S., Godowski,P.J. & Madara, J.L. Cutting edge: bacterial flagellin activates basolaterally expressed tlr5 to induce epithelial proinflammatory gene expression. J. Immunol.167, 1882–1885 (2001). ArticleCAS Google Scholar
Akhtar, M., Watson, J.L., Nazli, A. & McKay, D.M. Bacterial DNA evokes epithelial IL-8 production by a MAPK-dependent, NF-κB-independent pathway. FASEB J.17, 1319–1321 (2003). ArticleCAS Google Scholar
Otte, J.M., Cario, E. & Podolsky, D.K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology126, 1054–1070 (2004). ArticleCAS Google Scholar
Pedersen, G., Andresen, L., Matthiessen, M.W., Rask-Madsen, J. & Brynskov, J. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin. Exp. Immunol.141, 298–306 (2005). ArticleCAS Google Scholar
Katz, K.D. et al. Intestinal permeability in patients with Crohn's disease and their healthy relatives. Gastroenterology97, 927–931 (1989). ArticleCAS Google Scholar
Sandle, G.I. et al. Cellular basis for defective electrolyte transport in inflamed human colon. Gastroenterology99, 97–105 (1990). ArticleCAS Google Scholar
Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol.5, 190–198 (2004). ArticleCAS Google Scholar
Leifer, C.A. et al. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J. Immunol.173, 1179–1183 (2004). ArticleCAS Google Scholar
Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med.202, 1333–1339 (2005). ArticleCAS Google Scholar
Cohen, S., Achbert-Weiner, H. & Ciechanover, A. Dual effects of IκB kinase β-mediated phosphorylation on p105 Fate: SCF(β-TrCP)-dependent degradation and SCF(β-TrCP)-independent processing. Mol. Cell. Biol.24, 475–486 (2004). ArticleCAS Google Scholar
Beinke, S., Robinson, M.J., Hugunin, M. & Ley, S.C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol.24, 9658–9667 (2004). ArticleCAS Google Scholar
Waterfield, M.R., Zhang, M., Norman, L.P. & Sun, S.C. NF-κB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol. Cell11, 685–694 (2003). ArticleCAS Google Scholar
van Es, J.H. et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nature Cell Biol.7, 381–386 (2005). ArticleCAS Google Scholar
Cooper, H.S., Murthy S.N., Shah, R.S. & Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest.69, 238–249 (1993). CASPubMed Google Scholar
Marrero, J.A., Matkowskyj, K.A., Yung, K., Hecht, G. & Benya, R.V. Dextran sulfate sodium-induced murine colitis activates NF-κB and increases galanin-1 receptor expression. Am. J. Physiol. Gastrointest. Liver Physiol.278, G797–G804 (2000). ArticleCAS Google Scholar
Rhee, S.H. et al. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Nat Acad. Sci. USA102, 13610–13615 (2005). ArticleCAS Google Scholar
Schmausser, B. et al. Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin. Exp. Immunol.136, 521–526 (2004). ArticleCAS Google Scholar
Blitzer, J.T. & Nusse, R. A critical role for endocytosis in Wnt signaling. BMC. Cell Biol.7, 28 (2006). Article Google Scholar
Van, I.S.C., Maier, O., Van Der Wouden, J.M. & Hoekstra, D. The subapical compartment and its role in intracellular trafficking and cell polarity. J. Cell Physiol.184, 151–160 (2000). Article Google Scholar
Farquhar, M.G. & Palade, G.E. Junctional complexes in various epithelia. J. Cell Biol.17, 375–412 (1963). ArticleCAS Google Scholar
Beinke, S. et al. NF-κB1 p105 negatively regulates TPL-2 MEK kinase activity. Mol. Cell Biol.23, 4739–4752 (2003). ArticleCAS Google Scholar
Shang, F. et al. Lys6-modified ubiquitin inhibits ubiquitin-dependent protein degradation. J. Biol. Chem.280, 20365–20374 (2005). ArticleCAS Google Scholar
Neish, A.S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκBα ubiquitination. Science289, 1560–1563 (2000). ArticleCAS Google Scholar
Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol.5, 104–112 (2004). ArticleCAS Google Scholar
Campbell, A. Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol.48, 193–222 (1994). ArticleCAS Google Scholar
Parma, D.H. et al. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev.6, 497–510 (1992). ArticleCAS Google Scholar
Bonev, M.N., Kozubek, S., Krasavin, E.A. & Amirtajev, K.G. λ-prophage induction in repair-deficient and wild type E. coli strains by γ-rays and heavy ions. Int. J. Radiat. Biol.57, 993–1005 (1990). ArticleCAS Google Scholar
Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA100, 6646–6651 (2003). ArticleCAS Google Scholar
Greten, F.R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118, 285–296 (2004). ArticleCAS Google Scholar
Dwinell, M.B., Eckmann, L., Leopard, J.D., Varki, N.M. & Kagnoff, M.F. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology117, 359–367 (1999). ArticleCAS Google Scholar
Lee, J., Mira-Arbibe, L. & Ulevitch, R.J. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J. Leukoc. Biol.68, 909–915 (2000). CASPubMed Google Scholar
O'Neil, D.A. et al. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol.163, 6718–6724 (1999). CASPubMed Google Scholar
Bozdech, Z. et al. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol4, R9 (2003). Article Google Scholar
Barczak, A. et al. Spotted long oligonucleotide arrays for human gene expression anasis. Genome Res13, 1775–1785 (2003). ArticleCAS Google Scholar