- Gupta, G. P. & Massague, J. Cancer Metastasis: building a framework. Cell 127, 679 (2006).
Article CAS PubMed Google Scholar
- Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Rev. Med. 12, 895–904 (2006).
Article CAS Google Scholar
- Fidler, I. J. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Rev. Cancer 3, 1–6 (2003).
Article Google Scholar
- Steeg, P. S. Metastasis suppressors alter the signal transduction of cancer cells. Nature Rev. Cancer 3, 55–63 (2003).
Article CAS Google Scholar
- Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).
Article CAS PubMed Google Scholar
- Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).
Article CAS PubMed Google Scholar
- Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).
Article CAS PubMed Google Scholar
- Eccles, S. A. & Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742–1757 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).
Article CAS Google Scholar
- Stafford, L. J., Vaidya, K. S. & Welch, D. R. Metastasis suppressor genes in cancer. Int. J. Biochem. Cell Biol. 40, 874–891 (2008).
Article CAS PubMed Google Scholar
- Yoshida, B. A., Sokoloff, M. M., Welch, D. R. & Rinker-Schaeffer, C. W. Metastasis-suppressor genes: a review and perspective on an emerging field. J. Natl Cancer Inst. 92, 1717–1730 (2000).
Article CAS PubMed Google Scholar
- Grimm, S. The art and design of genetic screens: mammalian culture cells. Nature Rev. Genet. 5, 179–189 (2004).
Article CAS PubMed Google Scholar
- Schlabach, M. et al. Cancer proliferation gene discovery through functional genomics. Science 319, 620–624 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Dasgupta, R., Kaykas, A., Moon, R. T. & Perrimon, N. Functional genomic analysis of the Wnt-Wingless signaling pathway. Science 308, 826–832 (2005).
Article CAS PubMed Google Scholar
- Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systemic RNA interference. Nature 408, 325–330 (2000).
Article CAS PubMed Google Scholar
- Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).
Article CAS PubMed Google Scholar
- Berns K et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–7 (2004).
Article CAS PubMed Google Scholar
- Kolfschoten, I. G. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity Cell 121, 849–58 (2005).
Article CAS PubMed Google Scholar
- Aslakson, C. J. & Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).
CAS PubMed Google Scholar
- Aslakson, C. J., Rak, J. W., Miller, B. E. & Miller, F. R. Differential influence of organ site on three subpopulations of a single mouse mammary tumor at two distinct steps in metastasis. Int. J. Cancer 47, 466–472 (1991).
Article CAS PubMed Google Scholar
- Miller, F., Jones, R. F., Jacob, J., Kong, Y. C., Wei, Y. Z. From breast cancer immunology to her-2 DNA vaccine and autoimmune sequelae. Breast Dis. 20, 43–51 (2004).
Article CAS PubMed Google Scholar
- Dexter, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38, 3174–3181 (1978).
CAS PubMed Google Scholar
- Gumireddy, K. et al. An in vivo selection for metastasis promoting genes in the mouse. Proc. Natl Acad. Sci. USA 104, 6696–6701 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Lomberk, G., Urrutia, R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem. J. 392, 1–11 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Kaczynski, J., Cook, T., Urrutia, R. Sp1- and Krüppel-like transcription factors. Genome Biol. 4, 206 (2003).
Article PubMed PubMed Central Google Scholar
- Vliet, J. V. et al. Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 87, 474–482 (2005).
Article Google Scholar
- Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
Article CAS PubMed Google Scholar
- Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., Grosveld, F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375, 316–318 (1995).
Article CAS PubMed Google Scholar
- Perkins, A. C., Sharpe, A. H. & Orkin, S. H. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318–322 (1995).
Article CAS PubMed Google Scholar
- Kuo, C. T., Veselits, M. L., Leiden, J. M. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).
Article CAS PubMed Google Scholar
- Foster, K. W. et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res. 60, 6488–6495 (2000).
CAS PubMed Google Scholar
- Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).
Article CAS PubMed Google Scholar
- Ghaleb, A. M. et al. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res. 15, 92–96 (2005).
Article CAS PubMed Google Scholar
- Yan, W., Burns, K. H., Ma, L., Matzuk, M. M. Identification of Zfp393, a germ-cell specific gene encoding a novel zinc finger protein. Mech. of Dev. 118, 233–239 (2002).
Article CAS Google Scholar
- Hugo, H. et al. Epithelial-mesenchymal and mesenchymal-epithelial transition in carcinoma progression. J. Cell. Physiol. 213, 374–383 (2007).
Article CAS PubMed Google Scholar
- Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).
Article CAS PubMed Google Scholar
- Zavadil, J., Cermak, L., Soto-Nieves, N., Bottinger, E. P. Integration of TGF-β/Smad and Jagged1/Notch signaling in endothelial to mesenchymal transition. EMBO J. 23, 1155–1165 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Liebner, S. et al. β-catinin is required for endothelial-mesenchymal transformation furing heart cushion development in the mouse. J. Cell. Biol. 166, 359–367 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209 (2005).
Article CAS PubMed Google Scholar
- Hartwell, K. A. et al. The spemann organizer gene, goosecoid, promotes tumor metastasis. Proc. Natl. Acad. Sci. USA 103, 18969–18974 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Ruzinova, M. B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends in Cell Biol. 13, 410–418 (2003).
Article CAS Google Scholar
- Sikder, H. A., Devlin, M. K., Dunlap, S., Ryu, B. & Alani, R. Id proteins in cell growth and tumorigenesis Cancer Cell 3, 525–530 (2003).
Article CAS PubMed Google Scholar
- Ivarone, A. & Lasorella, A. ID proteins as targets in cancer and tools in neurobiology. Trends in Mol. Med. 12, 588–594 (2006).
Article Google Scholar
- Ying, Q., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).
Article CAS PubMed Google Scholar
- Li, Y., Yang, J., Luo, J., Dedhar, S., Liu, Y. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 18, 449–460 (2007).
Article PubMed Google Scholar
- Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumor xenograft. Nature 401, 670–677 (1999).
Article CAS PubMed Google Scholar
- Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Swarbrick, A., Roy, E., Allen, T. & Bishop, J. M. Id1 cooperates with oncogenic Ras to induce metastastic mammary carcinoma by subversion of the cellular senescence response. Proc. Natl. Acad. Sci. USA 105, 5402–5407 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Schoppmann, S. F. et al. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int. J. Cancer 104, 677–682 (2003).
Article CAS PubMed Google Scholar
- Lin, C. Q. et al. A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res. 60, 1332–1340 (2000).
CAS PubMed Google Scholar
- Gupta, G. P. et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc. Natl. Acad. Sci. USA 104, 19506–19511 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Henke, E. et al. Peptide-conjugated antise oligonucleotides for targeted inhibition of a transcription regulator in vivo. Nature Biotechnol. 26, 91–100 (2008).
Article CAS Google Scholar
- McAllister, S. D., Christian, R. T., Horowitz, M. P., Garcia, A. & Desprez, P. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther. 6, 2921–2927 (2007).
Article CAS PubMed Google Scholar
- Kataoka, M. et al. An agent that increases tumor suppressor transgene product coupled with systemic transgene delivery inhibits growth of metastatic lung cancer in vivo. Cancer Res. 58, 4761–4765 (1998).
CAS PubMed Google Scholar
- Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nature Cell Biol. 10, 202–210 (2008).
Article CAS PubMed Google Scholar
- Mukhopadhyay, A., Deplancke, B., Walhout, A. J. M., Tissenbaum, H. A. Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real- time PCR to study transcription factors binding to DNA in Caenorhabditis elegans. Nature Protoc. 3, 698–709 (2008).
Article CAS Google Scholar