Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation (original) (raw)
References
Fischer, T. et al. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc. Natl Acad. Sci. USA106, 8998–9003 (2009). ArticleCAS Google Scholar
Hediger, F. & Gasser, S. M. Heterochromatin protein 1: don't judge the book by its cover! Curr. Opin. Genet. Dev.16, 143–150 (2006). ArticleCAS Google Scholar
Hiragami, K. & Festenstein, R. Heterochromatin protein 1: a pervasive controlling influence. Cell Mol. Life Sci.62, 2711–2726 (2005). ArticleCAS Google Scholar
Loyola, A. et al. The HP1α–CAF1–SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep.10, 769–775 (2009). ArticleCAS Google Scholar
Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol.5, 296–304 (2004). ArticleCAS Google Scholar
Motamedi, M. R. et al. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol. Cell32, 778–790 (2008). ArticleCAS Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCAS Google Scholar
Nielsen, A. L. et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell7, 729–739 (2001). ArticleCAS Google Scholar
Brasher, S. V. et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J.19, 1587–1597 (2000). ArticleCAS Google Scholar
Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol.10, 27–30 (2000). ArticleCAS Google Scholar
Thiru, A. et al. Structural basis of HP1/PxVxL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J.23, 489–499 (2004). ArticleCAS Google Scholar
Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science299, 721–725 (2003). ArticleCAS Google Scholar
Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature438, 1116–1122 (2005). ArticleCAS Google Scholar
Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature438, 1176–1180 (2005). ArticleCAS Google Scholar
Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nat. Rev. Mol. Cell Biol.8, 798–812 (2007). ArticleCAS Google Scholar
Hayashi-Takanaka, Y., Yamagata, K., Nozaki, N. & Kimura, H. Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J. Cell Biol.187, 781–790 (2009). ArticleCAS Google Scholar
Sessa, F. et al. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell18, 379–391 (2005). ArticleCAS Google Scholar
Rosasco-Nitcher, S. E., Lan, W., Khorasanizadeh, S. & Stukenberg, P. T. Centromeric Aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science319, 469–472 (2008). ArticleCAS Google Scholar
Kelly, A. E. et al. Chromosomal enrichment and activation of the Aurora B pathway are coupled to spatially regulate spindle assembly. Dev. Cell12, 31–43 (2007). ArticleCAS Google Scholar
Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol.143, 1763–1774 (1998). ArticleCAS Google Scholar
Obuse, C. et al. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat. Cell Biol.6, 1135–1141 (2004). ArticleCAS Google Scholar
Kiyomitsu, T., Iwasaki, O., Obuse, C. & Yanagida, M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J. Cell Biol.188, 791–807 (2010). ArticleCAS Google Scholar
Lechner, M. S., Schultz, D. C., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem. Biophys. Res. Commun.331, 929–937 (2005). ArticleCAS Google Scholar
Tudor, M., Lobocka, M., Goodell, M., Pettitt, J. & O'Hare, K. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet.232, 126–134 (1992). ArticleCAS Google Scholar
Bartholomeeusen, K. et al. Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ. J. Biol. Chem.284, 11467–11477 (2009). ArticleCAS Google Scholar
Yamagishi, Y., Sakuno, T., Shimura, M. & Watanabe, Y. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature455, 251–255 (2008). ArticleCAS Google Scholar
Kitajima, T. S., Hauf, S., Ohsugi, M., Yamamoto, T. & Watanabe, Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr. Biol.15, 353–359 (2005). ArticleCAS Google Scholar
Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science293, 1320–1323 (2001). ArticleCAS Google Scholar
Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev.18, 2255–2268 (2004). ArticleCAS Google Scholar
Dai, J., Sullivan, B. A. & Higgins, J. M. Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev. Cell11, 741–750 (2006). ArticleCAS Google Scholar
Pouwels, J. et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plk1. Cell Cycle6, 1579–1585 (2007). ArticleCAS Google Scholar
Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol.161, 267–280 (2003). ArticleCAS Google Scholar
Tatsumi, Y., Ohta, S., Kimura, H., Tsurimoto, T. & Obuse, C. The ORC1 cycle in human cells: I. cell cycle-regulated oscillation of human ORC1. J. Biol. Chem.278, 41528–41534 (2003). ArticleCAS Google Scholar
Albritton, L. M., Tseng, L., Scadden, D. & Cunningham, J. M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell57, 659–666 (1989). ArticleCAS Google Scholar
Kitamura, T. et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol.31, 1007–1014 (2003). ArticleCAS Google Scholar
Kiyomitsu, T., Obuse, C. & Yanagida, M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell13, 663–676 (2007). ArticleCAS Google Scholar
Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat. Cell Biol.3, 114–120 (2001). ArticleCAS Google Scholar
Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics4, 1265–1272 (2005). ArticleCAS Google Scholar
Ando, S., Yang, H., Nozaki, N., Okazaki, T. & Yoda, K. CENP-A, -B, and -C chromatin complex that contains the I-type α-satellite array constitutes the prekinetochore in HeLa cells. Mol. Cell Biol.22, 2229–2241 (2002). ArticleCAS Google Scholar