Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol.5, 429–440 (2004). ArticleCAS Google Scholar
Cooke, C. A., Heck, M. M. & Earnshaw, W. C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol.105, 2053–2067 (1987). CASPubMed Google Scholar
Earnshaw, W. C. & Bernat, R. L. Chromosomal passengers: toward an integrated view of mitosis. Chromosoma100, 139–146 (1991). ArticleCASPubMed Google Scholar
Carmena, M. & Earnshaw, W. C. The cellular geography of aurora kinases. Nature Rev. Mol. Cell Biol.4, 842–854 (2003). ArticleCAS Google Scholar
Vagnarelli, P. & Earnshaw, W. C. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma113, 211–222 (2004). ArticlePubMed Google Scholar
Vader, G., Medema, R. H. & Lens, S. M. The chromosomal passenger complex: guiding Aurora-B through mitosis. J. Cell Biol.173, 833–837 (2006). ArticleCASPubMedPubMed Central Google Scholar
Adams, R. R. et al. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol.10, 1075–1078 (2000). ArticleCASPubMed Google Scholar
Honda, R., Korner, R. & Nigg, E. A. Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol. Biol. Cell14, 3325–3341 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sampath, S. C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell118, 187–202 (2004). ArticleCASPubMed Google Scholar
Gassmann, R. et al. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol.166, 179–191 (2004). CASPubMedPubMed Central Google Scholar
Klein, U. R., Nigg, E. A. & Gruneberg, U. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of borealin, survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell17, 2547–2558 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lens, S. M. et al. Uncoupling the central spindle-associated function of the chromosomal passenger complex from its role at centromeres. Mol. Biol. Cell17, 1897–1909 (2006). ArticleCASPubMedPubMed Central Google Scholar
Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and Aurora-B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol.153, 865–880 (2001). ArticleCASPubMedPubMed Central Google Scholar
Carvalho, A. et al. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J. Cell Sci.116, 2987–2998 (2003). ArticleCASPubMed Google Scholar
Lens, S. M. A. et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J.22, 2934–2947 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vader, G., Kauw, J. J., Medema, R. H. & Lens, S. M. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep.7, 85–92 (2006). This study provides important insights into the role of survivin in targeting the CPC to the centromere and the midbody. ArticleCASPubMed Google Scholar
Romano, A. et al. CSC-1: a subunit of the aurora b kinase complex that binds to the survivin-like protein BIR-1 and the INCENP-like protein ICP-1. J. Cell Biol.161, 229–236 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. H., Kang, J. S. & Chan, C. S. Sli15 associates with the Ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol.145, 1381–1394 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wheatley, S. P., Carvalho, A., Vagnarelli, P. & Earnshaw, W. C. INCENP is required for proper targeting of survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol.11, 886–890 (2001). ArticleCASPubMed Google Scholar
Bolton, M. A. et al. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol. Biol. Cell13, 3064–3077 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chen, J. et al. Survivin enhances Aurora-B kinase activity and localizes Aurora-B in human cells. J. Biol. Chem.278, 486–490 (2003). ArticleCASPubMed Google Scholar
Chan, C. S. & Botstein, D. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics135, 677–691 (1993). ArticleCASPubMedPubMed Central Google Scholar
Glover, D. M., Leibowitz, M. H., McLean, D. A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell81, 95–105 (1995). ArticleCASPubMed Google Scholar
Yan, X. et al. Aurora C is directly associated with survivin and required for cytokinesis. Genes Cells10, 617–626 (2005). ArticleCASPubMed Google Scholar
Sasai, K. et al. Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil. Cytoskeleton59, 249–263 (2004). ArticleCASPubMed Google Scholar
Kimura, M., Matsuda, Y., Yoshioka, T. & Okano, Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J. Biol. Chem.274, 7334–7340 (1999). ArticleCASPubMed Google Scholar
Kimmins, S. et al. Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol. Endocrinol. 27 Dec 2006 (doi: 10.1210/me.2006-0332). ArticleCASPubMed Google Scholar
Dieterich, K. et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nature Genet.39, 661–665 (2007). ArticleCASPubMed Google Scholar
Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. INCENP and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol.10, 1172–1181 (2000). ArticleCASPubMed Google Scholar
Kang, J. et al. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J. Cell Biol.155, 763–774 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bishop, J. D. & Schumacher, J. M. Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B kinase stimulates Aurora B kinase activity. J. Biol. Chem.277, 27577–27580 (2002). Shows that INCENP phosphorylation by Aurora-B kinase is the first part of a feedback loop that activates the kinase. ArticleCASPubMed Google Scholar
Sessa, F. et al. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell18, 379–391 (2005). ArticleCASPubMed Google Scholar
Kelly, A. E. et al. Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev. Cell12, 31–43 (2007). Demonstrates that clustering of the CPC results in kinase autoactivation, which in turn contributes to the spatial regulation of spindle assembly. ArticleCASPubMedPubMed Central Google Scholar
Han, Z. et al. The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase. Curr. Biol.15, 894–904 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chantalat, L. et al. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual α-helical extensions. Mol. Cell6, 183–189 (2000). ArticleCASPubMed Google Scholar
Muchmore, S. W. et al. Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol. Cell6, 173–182 (2000). ArticleCASPubMed Google Scholar
Verdecia, M. A. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Struct. Biol.7, 602–608 (2000). ArticleCASPubMed Google Scholar
Wheatley, S. P. et al. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J. Biol. Chem.279, 5655–5660 (2004). ArticleCASPubMed Google Scholar
Lens, S. M., Vader, G. & Medema, R. H. The case for survivin as mitotic regulator. Curr. Opin. Cell Biol.18, 616–622 (2006). ArticleCASPubMed Google Scholar
Altieri, D. C. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol.18, 609–615 (2006). ArticleCASPubMed Google Scholar
Andreassen, P. R., Palmer, D. K., Wener, M. H. & Margolis, R. L. Telophase disk: a new mammalian mitotic organelle that bisects telophase cells with a possible function in cytokinesis. J. Cell Sci.99, 523–534 (1991). ArticlePubMed Google Scholar
Mollinari, C. et al. The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev. Cell5, 295–307 (2003). ArticleCASPubMed Google Scholar
Dai, J., Sultan, S., Taylor, S. S. & Higgins, J. M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev.19, 472–488 (2005). ArticleCASPubMedPubMed Central Google Scholar
Earnshaw, W. C. & Cooke, C. A. Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of three distinct substages of metaphase and early events in cleavage furrow formation. J. Cell Sci.98, 443–461 (1991). ArticlePubMed Google Scholar
Adams, R. R. et al. Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma110, 65–74 (2001). ArticleCASPubMed Google Scholar
Zeitlin, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol.155, 1147–1157 (2001). ArticleCASPubMedPubMed Central Google Scholar
Crosio, C. et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol.22, 874–885 (2002). ArticleCASPubMedPubMed Central Google Scholar
Monier, K., Mouradian, S. & Sullivan, K. F. DNA methylation promotes Aurora-B-driven phosphorylation of histone H3 in chromosomal subdomains. J. Cell Sci.120, 101–114 (2007). ArticleCASPubMed Google Scholar
Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol.143, 1763–1774 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mackay, A. M., Ainsztein, A. M., Eckley, D. M. & Earnshaw, W. C. A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J. Cell Biol.140, 991–1002 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gillis, A. N., Thomas, S., Hansen, S. D. & Kaplan, K. B. A novel role for the CBF3– kinetochore-scaffold complex in regulating septin dynamics and cytokinesis. J. Cell Biol.171, 773–784 (2005). ArticleCASPubMedPubMed Central Google Scholar
Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell13, 1099–1108 (2002). ArticleCASPubMedPubMed Central Google Scholar
Beardmore, V. A., Ahonen, L. J., Gorbsky, G. J. & Kallio, M. J. Survivin dynamics increases at centromeres during G2/M phase transition and is regulated by microtubule-attachment and Aurora B kinase activity. J. Cell Sci.117, 4033–4042 (2004). ArticleCASPubMed Google Scholar
Vong, Q. P. et al. Chromosome alignment and segregation regulated by ubiquitination of survivin. Science310, 1499–1504 (2005). An elegant study which demonstrates that ubiquitylation of survivin regulates CPC dynamics at centromeres. ArticleCASPubMed Google Scholar
Kunitoku, N. et al. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell5, 853–864 (2003). ArticleCASPubMed Google Scholar
Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D. J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J.22, 1599–1607 (2003). ArticleCASPubMedPubMed Central Google Scholar
Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA104, 525–530 (2007). ArticleCASPubMed Google Scholar
Rangasamy, D., Greaves, I. & Tremethick, D. J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nature Struct. Mol. Biol.11, 650–655 (2004). ArticleCAS Google Scholar
Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell102, 279–291 (2000). ArticleCASPubMed Google Scholar
Murnion, M. E. et al. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J. Biol. Chem.276, 26656–26665 (2001). ArticleCASPubMed Google Scholar
Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol.152, 669–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Goto, H., Yasui, Y., Nigg, E. A. & Inagaki, M. Aurora-B phosphorylates histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells7, 11–17 (2002). ArticleCASPubMed Google Scholar
Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature438, 1116–1122 (2005). ArticleCASPubMed Google Scholar
Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature438, 1176–1180 (2005). ArticleCASPubMed Google Scholar
Mateescu, B. et al. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep.5, 490–496 (2004). ArticleCASPubMedPubMed Central Google Scholar
Terada, Y. Aurora-B/AIM-1 regulates the dynamic behavior of HP1α at the G2–M transition. Mol. Biol. Cell17, 3232–3241 (2006). References 64–67 show that Aurora-B negatively regulates the binding of HP1 proteins on heterochromatin as cells enter mitosis. ArticleCASPubMedPubMed Central Google Scholar
Minc, E. et al. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma108, 220–234 (1999). ArticleCASPubMed Google Scholar
Gassmann, R., Vagnarelli, P., Hudson, D. & Earnshaw, W. C. Mitotic chromosome formation and the condensin paradox. Exp. Cell Res.296, 35–42 (2004). ArticleCASPubMed Google Scholar
Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev.16, 729–742 (2002). ArticleCASPubMedPubMed Central Google Scholar
Takemoto, A. et al. Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res.35, 2403–2412 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lipp, J. J., Hirota, T., Poser, I. & Peters, J. M. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J. Cell Sci.120, 1245–1255 (2007). ArticleCASPubMed Google Scholar
MacCallum, D. E., Losada, A., Kobayashi, R. & Hirano, T. ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP–aurora B. Mol. Biol. Cell13, 25–39 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wadsworth, P. & Khodjakov, A. E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol.14, 413–419 (2004). ArticleCASPubMed Google Scholar
Gadea, B. B. & Ruderman, J. V. Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol. Biol. Cell16, 1305–1318 (2005). ArticleCASPubMedPubMed Central Google Scholar
Andersen, S. S. et al. Mitotic chromatin regulates phosphorylation of stathmin/Op18. Nature389, 640–643 (1997). ArticleCASPubMed Google Scholar
Gadea, B. B. & Ruderman, J. V. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/stathmin. Proc. Natl Acad. Sci. USA103, 4493–4498 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell2, 2 Apr 2004 (doi: 10.1091/mbc.E04-02-0082). ArticleCASPubMedPubMed Central Google Scholar
Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol.16, 536–541 (2006). ArticleCASPubMedPubMed Central Google Scholar
Buvelot, S., Tatsutani, S. Y., Vermaak, D. & Biggins, S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J. Cell Biol.160, 329–339 (2003). ArticleCASPubMedPubMed Central Google Scholar
He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore–microtubule attachment in budding yeast. Cell106, 195–206 (2001). ArticleCASPubMed Google Scholar
Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell108, 317–329 (2002). ArticleCASPubMed Google Scholar
Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting bubR1, Mad2 and CENP-E to kinetochores. J. Cell Biol.161, 267–280 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol.161, 281–294 (2003). ArticleCASPubMedPubMed Central Google Scholar
Murata-Hori, M. & Wang, Y. L. The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr. Biol.12, 894–899 (2002). ArticleCASPubMed Google Scholar
Liu, S. T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol.175, 41–53 (2006). ArticleCASPubMedPubMed Central Google Scholar
Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev.13, 532–544 (1999). The first report to show a requirement for Aurora-B in the regulation of microtubule–kinetochore binding. ArticleCASPubMedPubMed Central Google Scholar
Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev.15, 3118–3129 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kotwaliwale, C. & Biggins, S. Microtubule capture: a concerted effort. Cell127, 1105–1108 (2006). ArticleCASPubMed Google Scholar
Cheeseman, I. M. et al. Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell111, 163–172 (2002). ArticleCASPubMed Google Scholar
DeLuca, J. G. et al. Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol.13, 2103–2109 (2003). ArticleCASPubMed Google Scholar
Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell127, 983–997 (2006). ArticleCASPubMed Google Scholar
Deluca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by HEC1. Cell127, 969–982 (2006). References 92 and 93 are two thorough studies which show that HEC1/Ndc80 phosphorylation by Aurora-B negatively regulates kinetochore–microtubule attachment. ArticleCASPubMed Google Scholar
Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell15, 1146–1159 (2004). ArticleCASPubMedPubMed Central Google Scholar
Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell6, 253–268 (2004). ArticleCASPubMed Google Scholar
Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol.14, 273–286 (2004). ArticleCASPubMed Google Scholar
Knowlton, A. L., Lan, W. & Stukenberg, P. T. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr. Biol.16, 1705–1710 (2006). ArticleCASPubMed Google Scholar
Sugiyama, K. et al. Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene21, 3103–3111 (2002). ArticleCASPubMed Google Scholar
Ohi, R., Coughlin, M. L., Lane, W. S. & Mitchison, T. J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell5, 309–321 (2003). ArticleCASPubMed Google Scholar
Sandall, S. et al. A Bir1–Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell127, 1179–1191 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wheatley, S. P. et al. INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp. Cell Res.262, 122–127 (2001). ArticleCASPubMed Google Scholar
Musacchio, A. & Hardwick, K. G. The spindle checkpoint: structural insights into dynamic signalling. Nature Rev. Mol. Cell Biol.3, 731–741 (2002). ArticleCAS Google Scholar
Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol.15, 486–493 (2005). ArticleCASPubMed Google Scholar
Kallio, M. J., McCleland, M. L., Stukenberg, P. T. & Gorbsky, G. J. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol.12, 900–905 (2002). ArticleCASPubMed Google Scholar
Morrow, C. J. et al. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J. Cell Sci.118, 3639–3652 (2005). ArticleCASPubMed Google Scholar
Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science297, 2267–2270 (2002). ArticleCASPubMed Google Scholar
McCleland, M. L. et al. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev.17, 101–114 (2003). ArticleCASPubMedPubMed Central Google Scholar
Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nature Cell Biol.8, 180–187 (2006). ArticleCASPubMed Google Scholar
Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol.3, e69 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev.16, 3004–3016 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell9, 515–525 (2002). ArticleCASPubMed Google Scholar
Watanabe, Y. Shugoshin: guardian spirit at the centromere. Curr. Opin. Cell Biol.17, 590–595 (2005). ArticleCASPubMed Google Scholar
Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature441, 46–52 (2006). ArticleCASPubMed Google Scholar
Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell10, 575–585 (2006). ArticleCASPubMed Google Scholar
Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature441, 53–61 (2006). ArticleCASPubMed Google Scholar
Resnick, T. D. et al. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev. Cell11, 57–68 (2006). This study was the first to show that the CPC contributes to the maintenance of meiotic centromere cohesion through MEI-S332/Shugoshin. ArticleCASPubMedPubMed Central Google Scholar
Dai, J., Sullivan, B. A. & Higgins, J. M. Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev. Cell11, 741–750 (2006). ArticleCASPubMed Google Scholar
Kitajima, T. S. et al. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr. Biol.15, 353–359 (2005). ArticleCASPubMed Google Scholar
Vanoosthuyse, V., Prykhozhij, S. & Hardwick, K. G. Shugoshin2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol. Biol. Cell18, 1657–1669 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kawashima, S. A. et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev.21, 420–435 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pereira, G. & Schiebel, E. Separase regulates INCENP–Aurora B anaphase spindle function through Cdc14. Science302, 2120–2124 (2003). ArticleCASPubMed Google Scholar
Gruneberg, U. et al. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J. Cell Biol.166, 167–172 (2004). ArticleCASPubMedPubMed Central Google Scholar
Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol.162, 863–875 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cesario, J. M. et al. Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators. J. Cell Sci.119, 4770–4780 (2006). ArticleCASPubMed Google Scholar
Eckley, D. M. et al. Chromosomal proteins and cytokinesis: patterns of cleavage furrow formation and inner centromere protein positioning in mitotic heterokaryons and mid-anaphase cells. J. Cell Biol.136, 1169–1183 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schumacher, J. M., Golden, A. & Donovan, P. J. AIR-2: an Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J. Cell Biol.143, 1635–1646 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tatsuka, M. et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res.58, 4811–4816 (1998). CASPubMed Google Scholar
Severson, A. F. et al. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr. Biol.10, 1162–1171 (2000). ArticleCASPubMed Google Scholar
Guse, A., Mishima, M. & Glotzer, M. Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr. Biol.15, 778–786 (2005). ArticleCASPubMed Google Scholar
Mishima, M., Kaitna, S. & Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell2, 41–54 (2002). ArticleCASPubMed Google Scholar
Jantsch-Plunger, V. et al. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol.149, 1391–1404 (2000). ArticleCASPubMedPubMed Central Google Scholar
Minoshima, Y. et al. Phosphorylation by Aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell4, 549–560 (2003). ArticleCASPubMed Google Scholar
Goto, H. et al. Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J. Biol. Chem.278, 8526–8530 (2003). ArticleCASPubMed Google Scholar
Yasui, Y. et al. Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis. J. Biol. Chem.279, 12997–13003 (2004). ArticleCASPubMed Google Scholar
Faitar, S. L., Sossey-Alaoui, K., Ranalli, T. A. & Cowell, J. K. EVI5 protein associates with the INCENP–Aurora B kinase–survivin chromosomal passenger complex and is involved in the completion of cytokinesis. Exp. Cell Res.312, 2325–2335 (2006). ArticleCASPubMed Google Scholar
Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell125, 85–98 (2006). ArticleCASPubMed Google Scholar
Cutts, S. M. et al. Defective chromosome segregation, microtubule bundling and nuclear bridging in inner centromere protein gene (INCENP)-disrupted mice. Hum. Mol. Genet.8, 1145–1155 (1999). ArticleCASPubMed Google Scholar
Uren, A. G. et al. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol.10, 1319–1328 (2000). ArticleCASPubMed Google Scholar
Hanson, K. K., Kelley, A. C. & Bienz, M. Loss of Drosophila borealin causes polyploidy, delayed apoptosis and abnormal tissue development. Development132, 4777–4787 (2005). ArticleCASPubMed Google Scholar
Chang, C. J. et al. Drosophila INCENP is required for cytokinesis and asymmetric cell division during development of the nervous system. J. Cell Sci.119, 1144–1153 (2006). ArticleCASPubMed Google Scholar
Kaitna, S. et al. The Aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr. Biol.12, 798–812 (2002). ArticleCASPubMed Google Scholar
Rogers, E. et al. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol.157, 219–229 (2002). ArticleCASPubMedPubMed Central Google Scholar
George, O., Johnston, M. A. & Shuster, C. B. Aurora B kinase maintains chromatin organization during the MI to MII transition in surf clam oocytes. Cell Cycle5, 2648–2656 (2006). ArticleCASPubMed Google Scholar
Wang, Y., Toppari, J., Parvinen, M. & Kallio, M. J. Inhibition of Aurora kinases perturbs chromosome alignment and spindle checkpoint signaling in rat spermatocytes. Exp. Cell Res.312, 3459–3470 (2006). ArticleCASPubMed Google Scholar
Monje-Casas, F. et al. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell128, 477–490 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yu, H. G. & Koshland, D. The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. J. Cell Biol.176, 911–918 (2007). Shows that the CPC contributes to the maintenance of meiotic centromeric cohesion through Rts1/PP2A. ArticleCASPubMedPubMed Central Google Scholar
Parra, M. T. et al. Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J. Cell Sci.116, 961–974 (2003). ArticleCASPubMed Google Scholar
Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol.8, 379–393 (2007). ArticleCAS Google Scholar
Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev.18, 2255–2268 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chan, G. K., Liu, S. T. & Yen, T. J. Kinetochore structure and function. Trends Cell Biol.15, 589–598 (2005). ArticleCASPubMed Google Scholar
Kline-Smith, S. L., Sandall, S. & Desai, A. Kinetochore–spindle microtubule interactions during mitosis. Curr. Opin. Cell Biol.17, 35–46 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bernat, R. L., Delannoy, M. R., Rothfield, N. F. & Earnshaw, W. C. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell66, 1229–1238 (1991). ArticleCASPubMed Google Scholar
Desai, A. et al. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev.17, 2421–2435 (2003). ArticleCASPubMedPubMed Central Google Scholar
Goshima, G., Saitoh, S. & Yanagida, M. Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev.13, 1664–1677 (1999). ArticleCASPubMedPubMed Central Google Scholar
Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol.160, 25–39 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kline, S. L. et al. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol.173, 9–17 (2006). ArticleCASPubMedPubMed Central Google Scholar
Maiato, H., Deluca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci.117, 5461–5477 (2004). ArticleCASPubMed Google Scholar