Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells (original) (raw)
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). ArticleCAS Google Scholar
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). ArticleCAS Google Scholar
Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med.12, 657–664 (2006). ArticleCAS Google Scholar
Scadden, D. T. The stem-cell niche as an entity of action. Nature441, 1075–1079 (2006). ArticleCAS Google Scholar
Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol.8, 290–301 (2008). ArticleCAS Google Scholar
Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell4, 263–274 (2009). ArticleCAS Google Scholar
Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell109, 625–637 (2002). ArticleCAS Google Scholar
Lane, S. W., Scadden, D. T. & Gilliland, D. G. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood114, 1150–1157 (2009). ArticleCAS Google Scholar
Avecilla, S. T. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat. Med.10, 64–71 (2004). ArticleCAS Google Scholar
Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer10, 138–146 (2010). ArticleCAS Google Scholar
Ding, B. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature doi:10.1038nature09493 (2010).
Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell6, 251–264 (2010). ArticleCAS Google Scholar
Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation105, 1135–1143 (2002). ArticleCAS Google Scholar
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med.1, 27–31 (1995). ArticleCAS Google Scholar
Fernandez, L. et al. Tumor necrosis factor-alpha and endothelial cells modulate Notch signaling in the bone marrow microenvironment during inflammation. Exp. Hematol.36, 545–558 (2008). ArticleCAS Google Scholar
Yeoh, J.S. et al. Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells24, 1564–1572 (2006). ArticleCAS Google Scholar
Seandel, M. et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc. Natl Acad. Sci. USA105, 19288–19293 (2008). ArticleCAS Google Scholar
Shiojima, I. & Walsh, K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res.90, 1243–1250 (2002). ArticleCAS Google Scholar
Phung, T. L. et al. Pathological angiogenesis is induced by sustained Akt signalling and inhibited by rapamycin. Cancer Cell10, 159–170 (2006). ArticleCAS Google Scholar
Pages, G. et al. Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann. N. Y. Acad. Sci.902, 187–200 (2000). ArticleCAS Google Scholar
Matsunaga, T., Kato, T., Miyazaki, H. & Ogawa, M. Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6. Blood92, 452–461 (1998). CASPubMed Google Scholar
Nemeth, M.J., Topol, L., Anderson, S.M., Yang, Y. & Bodine, D.M. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc. Natl Acad. Sci. USA104, 15436–15441 (2007). ArticleCAS Google Scholar
Zhang, C. C. & Lodish, H. F. Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. Blood103, 2513–2521 (2004). ArticleCAS Google Scholar
Humar, R., Kiefer, F.N., Berns, H., Resink, T.J. & Battegay, E.J. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J.16, 771–780 (2002). ArticleCAS Google Scholar
Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest.115, 2382–2392 (2005). ArticleCAS Google Scholar
Sun, J.F. et al. Microvascular patterning is controlled by fine-tuning the Akt signal. Proc. Natl Acad. Sci. USA102, 128–133 (2005). ArticleCAS Google Scholar
Huynh, H. et al. Insulin-like growth factor-binding protein 2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells26, 1628–1635 (2008). ArticleCAS Google Scholar
Zhang, C. C., Kaba, M., Iizuka, S., Huynh, H. & Lodish, H. F. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood111, 3415–3423 (2008). ArticleCAS Google Scholar
Han, W., Ye, Q. & Moore, M. A. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood95, 1616–1625 (2000). CASPubMed Google Scholar
Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell8, 389–400 (2005). ArticleCAS Google Scholar
Goldman, D. C. et al. BMP4 regulates the hematopoietic stem cell niche. Blood114, 4393–4401 (2009). ArticleCAS Google Scholar
Fleming, H. E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell2, 274–283 (2008). ArticleCAS Google Scholar
Kopp, H.G. et al. Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood106, 505–513 (2005). ArticleCAS Google Scholar
Kopp, H.G. et al. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization. J. Clin. Invest.116, 3277–3291 (2006). ArticleCAS Google Scholar
Dimmeler, S. & Zeiher, A. M. Akt takes center stage in angiogenesis signaling. Circ. Res.86, 4–5 (2000). ArticleCAS Google Scholar
Cross, M. J. & Claesson-Welsh, L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci22, 201–207 (2001). ArticleCAS Google Scholar
Rafii, S. et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood84, 10–19 (1994). CASPubMed Google Scholar
Tang, E. D., Nunez, G., Barr, F. G. & Guan, K. L. Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem.274, 16741–16746 (1999). ArticleCAS Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). ArticleCAS Google Scholar