A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia (original) (raw)
References
Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol.3, 813–825 (2002). ArticleCAS Google Scholar
Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol.12, 703–710 (2010). ArticleCAS Google Scholar
Fan, S. et al. Induction of Ran GTP drives ciliogenesis. Mol. Biol. Cell22, 4539–4548 (2011). ArticleCAS Google Scholar
Hurd, T. W., Fan, S. & Margolis, B. L. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin β2. J. Cell Sci.124, 718–726 (2011). ArticleCAS Google Scholar
Berbari, N. F., O’Connor, A. K., Haycraft, C. J. & Yoder, B. K. The primary cilium as a complex signaling center. Curr. Biol.19, R526–R535 (2009). ArticleCAS Google Scholar
Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol.69, 377–400 (2007). ArticleCAS Google Scholar
Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet.7, 125–148 (2006). ArticleCAS Google Scholar
Sharma, N., Berbari, N. F. & Yoder, B. K. Ciliary dysfunction in developmental abnormalities and diseases. Curr. Top. Dev. Biol.85, 371–427 (2008). ArticleCAS Google Scholar
Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. New Engl. J. Med.364, 1533–1543 (2011). ArticleCAS Google Scholar
Nachury, M. V., Seeley, E. S. & Jin, H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol.26, 59–87 (2010). ArticleCAS Google Scholar
Anderson, R. G. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J. Cell Biol.54, 246–265 (1972). ArticleCAS Google Scholar
Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol.11, 1586–1590 (2001). ArticleCAS Google Scholar
Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol.53, 494–509 (1972). ArticleCAS Google Scholar
Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol.190, 927–940 (2010). ArticleCAS Google Scholar
Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet.43, 776–784 (2011). ArticleCAS Google Scholar
Sang, L. et al. Mapping the NPHP–JBTS–MKS protein network reveals ciliopathy disease genes and pathways. Cell145, 513–528 (2011). ArticleCAS Google Scholar
Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol.192, 1023–1041 (2011). ArticleCAS Google Scholar
Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol.14, 61–72 (2012). ArticleCAS Google Scholar
Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol.4, 757–766 (2003). ArticleCAS Google Scholar
Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol.15, 607–660 (1999). ArticleCAS Google Scholar
Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol.8, 195–208 (2007). ArticleCAS Google Scholar
Lang, I., Scholz, M. & Peters, R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J. Cell Biol.102, 1183–1190 (1986). ArticleCAS Google Scholar
Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature254, 109–114 (1975). ArticleCAS Google Scholar
Takao, D. & Kamimura, S. Geometry-specific heterogeneity of the apparent diffusion rate of materials inside sperm cells. Biophys. J.98, 1582–1588 (2010). ArticleCAS Google Scholar
Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J.28, 2541–2553 (2009). ArticleCAS Google Scholar
Calvert, P. D., Schiesser, W. E. & Pugh, E. N. Jr Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J. Gen. Physiol.135, 173–196 (2010). ArticleCAS Google Scholar
Francis, S. S., Sfakianos, J., Lo, B. & Mellman, I. A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J. Cell Biol.193, 219–233 (2011). ArticleCAS Google Scholar
Brohawn, S. G., Partridge, J. R., Whittle, J. R. & Schwartz, T. U. The nuclear pore complex has entered the atomic age. Structure17, 1156–1168 (2009). ArticleCAS Google Scholar
D’Angelo, M. A. & Hetzer, M. W. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol.18, 456–466 (2008). Article Google Scholar
Dultz, E. & Ellenberg, J. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J. Cell Biol.191, 15–22 (2010). ArticleCAS Google Scholar
Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol.6, 1114–1121 (2004). ArticleCAS Google Scholar
Murrell, J. R. & Hunter, D. D. An olfactory sensory neuron line, odora, properly targets olfactory proteins and responds to odorants. J. Neurosci.19, 8260–8270 (1999). ArticleCAS Google Scholar
Davis, L. I. & Blobel, G. Identification and characterization of a nuclear pore complex protein. Cell45, 699–709 (1986). ArticleCAS Google Scholar
Otto, E. A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal–renal ciliopathy. Nat. Genet.42, 840–850 (2010). ArticleCAS Google Scholar
Clever, J., Yamada, M. & Kasamatsu, H. Import of simian virus 40 virions through nuclear pore complexes. Proc. Natl Acad. Sci. USA88, 7333–7337 (1991). ArticleCAS Google Scholar
Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Gorlich, D. Dominant-negative mutants of importin- β block multiple pathways of import and export through the nuclear pore complex. EMBO J.16, 1153–1163 (1997). ArticleCAS Google Scholar
Strambio-De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol.11, 490–501 (2010). ArticleCAS Google Scholar
Walther, T. C. et al. The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins. EMBO J.20, 5703–5714 (2001). ArticleCAS Google Scholar
Hammond, J. W., Blasius, T. L., Soppina, V., Cai, D. & Verhey, K. J. Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J. Cell Biol.189, 1013–1025 (2010). ArticleCAS Google Scholar