A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia (original) (raw)

References

  1. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).
    Article CAS Google Scholar
  2. Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703–710 (2010).
    Article CAS Google Scholar
  3. Fan, S. et al. Induction of Ran GTP drives ciliogenesis. Mol. Biol. Cell 22, 4539–4548 (2011).
    Article CAS Google Scholar
  4. Hurd, T. W., Fan, S. & Margolis, B. L. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin β2. J. Cell Sci. 124, 718–726 (2011).
    Article CAS Google Scholar
  5. Berbari, N. F., O’Connor, A. K., Haycraft, C. J. & Yoder, B. K. The primary cilium as a complex signaling center. Curr. Biol. 19, R526–R535 (2009).
    Article CAS Google Scholar
  6. Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 (2007).
    Article CAS Google Scholar
  7. Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).
    Article CAS Google Scholar
  8. Sharma, N., Berbari, N. F. & Yoder, B. K. Ciliary dysfunction in developmental abnormalities and diseases. Curr. Top. Dev. Biol. 85, 371–427 (2008).
    Article CAS Google Scholar
  9. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. New Engl. J. Med. 364, 1533–1543 (2011).
    Article CAS Google Scholar
  10. Nachury, M. V., Seeley, E. S. & Jin, H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26, 59–87 (2010).
    Article CAS Google Scholar
  11. Anderson, R. G. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J. Cell Biol. 54, 246–265 (1972).
    Article CAS Google Scholar
  12. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).
    Article CAS Google Scholar
  13. Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494–509 (1972).
    Article CAS Google Scholar
  14. Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).
    Article CAS Google Scholar
  15. Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 (2011).
    Article CAS Google Scholar
  16. Sang, L. et al. Mapping the NPHP–JBTS–MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).
    Article CAS Google Scholar
  17. Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).
    Article CAS Google Scholar
  18. Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2012).
    Article CAS Google Scholar
  19. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).
    Article CAS Google Scholar
  20. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).
    Article CAS Google Scholar
  21. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195–208 (2007).
    Article CAS Google Scholar
  22. Lang, I., Scholz, M. & Peters, R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J. Cell Biol. 102, 1183–1190 (1986).
    Article CAS Google Scholar
  23. Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature 254, 109–114 (1975).
    Article CAS Google Scholar
  24. Takao, D. & Kamimura, S. Geometry-specific heterogeneity of the apparent diffusion rate of materials inside sperm cells. Biophys. J. 98, 1582–1588 (2010).
    Article CAS Google Scholar
  25. Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).
    Article CAS Google Scholar
  26. Calvert, P. D., Schiesser, W. E. & Pugh, E. N. Jr Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J. Gen. Physiol. 135, 173–196 (2010).
    Article CAS Google Scholar
  27. Francis, S. S., Sfakianos, J., Lo, B. & Mellman, I. A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J. Cell Biol. 193, 219–233 (2011).
    Article CAS Google Scholar
  28. Brohawn, S. G., Partridge, J. R., Whittle, J. R. & Schwartz, T. U. The nuclear pore complex has entered the atomic age. Structure 17, 1156–1168 (2009).
    Article CAS Google Scholar
  29. D’Angelo, M. A. & Hetzer, M. W. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 18, 456–466 (2008).
    Article Google Scholar
  30. Dultz, E. & Ellenberg, J. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J. Cell Biol. 191, 15–22 (2010).
    Article CAS Google Scholar
  31. Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121 (2004).
    Article CAS Google Scholar
  32. Murrell, J. R. & Hunter, D. D. An olfactory sensory neuron line, odora, properly targets olfactory proteins and responds to odorants. J. Neurosci. 19, 8260–8270 (1999).
    Article CAS Google Scholar
  33. Davis, L. I. & Blobel, G. Identification and characterization of a nuclear pore complex protein. Cell 45, 699–709 (1986).
    Article CAS Google Scholar
  34. Otto, E. A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal–renal ciliopathy. Nat. Genet. 42, 840–850 (2010).
    Article CAS Google Scholar
  35. Clever, J., Yamada, M. & Kasamatsu, H. Import of simian virus 40 virions through nuclear pore complexes. Proc. Natl Acad. Sci. USA 88, 7333–7337 (1991).
    Article CAS Google Scholar
  36. Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Gorlich, D. Dominant-negative mutants of importin- β block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16, 1153–1163 (1997).
    Article CAS Google Scholar
  37. Strambio-De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490–501 (2010).
    Article CAS Google Scholar
  38. Walther, T. C. et al. The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins. EMBO J. 20, 5703–5714 (2001).
    Article CAS Google Scholar
  39. Hammond, J. W., Blasius, T. L., Soppina, V., Cai, D. & Verhey, K. J. Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J. Cell Biol. 189, 1013–1025 (2010).
    Article CAS Google Scholar

Download references