Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation (original) (raw)
Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol.8, 729–740 (2007). ArticleCAS Google Scholar
Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell130, 223–233 (2007). ArticleCAS Google Scholar
Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature436, 660–665 (2005). ArticleCAS Google Scholar
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature436, 725–730 (2005). ArticleCAS Google Scholar
Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature436, 642 (2005). ArticleCAS Google Scholar
Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436, 720–724 (2005). ArticleCAS Google Scholar
Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature479, 232–236 (2011). ArticleCAS Google Scholar
d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature426, 194–198 (2003). Article Google Scholar
Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell14, 501–513 (2004). ArticleCAS Google Scholar
Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature345, 458–460 (1990). ArticleCAS Google Scholar
Evan, G. I. & d’Adda di Fagagna, F. Cellular senescence: hot or what? Curr. Opin. Genet. Dev.19, 25–31 (2009). ArticleCAS Google Scholar
Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science319, 1352–1355 (2008). ArticleCAS Google Scholar
Schmitt, C. A. Senescence, apoptosis and therapy-cutting the lifelines of cancer. Nat. Rev. Cancer3, 286–295 (2003). ArticleCAS Google Scholar
Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science311, 1257 (2006). ArticleCAS Google Scholar
Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature447, 725–729 (2007). ArticleCAS Google Scholar
Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature447, 686–690 (2007). ArticleCAS Google Scholar
Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev.128, 36–44 (2007). ArticleCAS Google Scholar
Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature461, 1071–1078 (2009). ArticleCAS Google Scholar
Meier, A. et al. Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO J.26, 2707–2718 (2007). ArticleCAS Google Scholar
Zhou, B. B. & Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat. Rev. Cancer4, 216–225 (2004). ArticleCAS Google Scholar
Rodier, F. et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci.124, 68–81 (2011). ArticleCAS Google Scholar
O’Sullivan, R. J. & Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol.11, 171–181 (2010). Article Google Scholar
Bae, N. S. & Baumann, P. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol. Cell26, 323–334 (2007). ArticleCAS Google Scholar
Bombarde, O. et al. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J.29, 1573–1584 (2010). ArticleCAS Google Scholar
Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun.3, 708 (2012). Article Google Scholar
Le, O. N. et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell9, 398–409 (2010). ArticleCAS Google Scholar
Van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell92, 401–413 (1998). ArticleCAS Google Scholar
Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol.13, 1549–1556 (2003). ArticleCAS Google Scholar
Fujita, K. et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat. Cell Biol.12, 1205–1212 (2010). ArticleCAS Google Scholar
Gonzalo, S. et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol.7, 420–428 (2005). ArticleCAS Google Scholar
Marchion, D. C., Bicaku, E., Daud, A. I., Sullivan, D. M. & Munster, P. N. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res.65, 3815–3822 (2005). ArticleCAS Google Scholar
Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell31, 167–177 (2008). ArticleCAS Google Scholar
Diede, S. J. & Gottschling, D. E. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr. Biol.11, 1336–1340 (2001). ArticleCAS Google Scholar
Michelson, R. J., Rosenstein, S. & Weinert, T. A telomeric repeat sequence adjacent to a DNA double-stranded break produces an anticheckpoint. Genes Dev.19, 2546–2559 (2005). ArticleCAS Google Scholar
Marcand, S., Pardo, B., Gratias, A., Cahun, S. & Callebaut, I. Multiple pathways inhibit NHEJ at tolemeres. Genes Dev.22, 1153–1158 (2008). ArticleCAS Google Scholar
Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol.7, 712–718 (2005). ArticleCAS Google Scholar
Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell Biol.22, 3474–3487 (2002). ArticleCAS Google Scholar
Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol.9, 675–682 (2007). ArticleCAS Google Scholar
Huang, L. C., Clarkin, K. C. & Wahl, G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci. USA93, 4827–4832 (1996). ArticleCAS Google Scholar
Petersen, S., Saretzki, G. & von Zglinicki, T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp. Cell Res.239, 152–160 (1998). ArticleCAS Google Scholar
Rochette, P. J. & Brash, D. E. Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair. PLoS Genet.6, e1000926 (2010). Article Google Scholar
Gomes, N. M. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell10, 761–768 (2011). ArticleCAS Google Scholar
Giaimo, S. & d’Adda di Fagagna, F. Is cellular senescence an example of antagonistic pleiotropy? Aging Celldoi: 10.1111/j.1474-9726.2012.00807.x (2012).
Marusyk, A., Wheeler, L. J., Mathews, C. K. & DeGregori, J. p53 mediates senescence-like arrest induced by chronic replicational stress. Mol. Cell Biol.27, 5336–5351 (2007). ArticleCAS Google Scholar
Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature444, 638–642 (2006). ArticleCAS Google Scholar
Ye, J. et al. TRF2 and apollo cooperate with topoisomerase 2_α_ to protect human telomeres from replicative damage. Cell142, 230–242 (2010). ArticleCAS Google Scholar
Soutoglou, E. & Misteli, T. Activation of the cellular DNA damage response in the absence of DNA lesions. Science320, 1507–1510 (2008). ArticleCAS Google Scholar
Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol.8, 870–876 (2006). ArticleCAS Google Scholar
Francia, S., Weiss, R. S. & d’Adda di Fagagna, F. Need telomere maintenance? Call 911 Cell Div.2, 3 (2007). Article Google Scholar
Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity32, 317–328 (2010). ArticleCAS Google Scholar
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics26, 589–595 (2010). Article Google Scholar
Nobuyuki, O. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber.9, 62–66 (1979). Article Google Scholar
Duffy, D. L. Lodplot: plot a genome scan. R package version 1.1. (2007).
The R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2008.
Di Micco, R. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat. Cell Biol.13, 292–302 (2011). ArticleCAS Google Scholar
Viscardi, V., Bonetti, D., Cartagena-Lirola, H., Lucchini, G. & Longhese, M. P. MRX-dependent DNA damage response to short telomeres. Mol. Biol. Cell18, 3047–3058 (2007). ArticleCAS Google Scholar